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Gauge/Gravity duality in a nutshell
.

.

4D gauge theory at large ↔ 5D classical theory of gravity
λ and N

A pure state ↔ A horizonless regular solution
An equilibrium state ↔ A black hole solution

A nonequilibrium state ↔ A solution with a regular future
horizon at late time

Further,

Expectation value of a ↔ Asymptotic fall-off of
gauge-invariant operator the dual field in the geometry

eg.

< tµν > in a state ↔ Asymptotic deviation of metric from pure AdS giving
Balasubramanian-Krauss stress tensor
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Universality and Einstein’s equations
.

.

Solutions of pure gravity with regular future horizons define
the universal sector of gauge/gravity duality.

Boost invariant solutions dual to an expanding quark-gluon
plasma predict hydrodynamic behavior at late time [Janik et.
al.].
Solutions with regular future horizons parametrically slowly
varying spatio-temporally with respect to the final equilibrium
temperature give systematic exact determination of all linear
and non-linear transport coefficients [Bhattacharyya et. al.].
All solutions of pure gravity are determined by BK stress
tensor, therefore all states in universal sector are determined
by < tµν > alone. Further, we have states where < tµν > is
purely hydrodynamic [AM, Gupta]!
Quasinormal modes of the black brane dual to thermal state
have infinite non-hydrodynamic branches [Starinets et. al].
Non-hydrodynamic behavior has been numerically explored in
boost-invariant configurations [Heller et. al.].
Einstein’s equations give us fluid mechanics, so can they also
give us phenomenology of general irreversible phenomena?
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The Boltzmann Equation and the Universal Sector
.

.

.
Goal : Field theoretic understanding of universal sector
..

.

. ..

.

.

Why the energy-momentum tensor alone determines the
states? Why can it be purely hydrodynamic in certain cases?

Can we construct phenomenological equations of motion for
energy-momentum tensor such that they give us all
geometries which equilibrate thermally and have a regular
future horizon?

The relativistic semiclassical Boltzmann equation gives a good
perturbative description of non-equilibrium processes in
non-Abelian gauge theories [Moore, Yaffe].
We consider states which have equidistribution of
quasiparticles in a CFT in internal space which includes color,
spin, flavor charge, etc. at any point in phase space so we
have one effective quasiparticle distibution f (x,v).
Are there special solutions which can be determined by
energy-momentum tensor alone? Do they give derivation of
phenomenological equations of irreversible processes?
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The quasiparticle distribution
.

.

The local velocity moments of the quasiparticle distribution in
a local inertial frame :

fi1...in(x, t) =
∫

d3v
(

vi1 − ui1(x, t)
)
...
(

vin − uin(x, t)
)

f (x,v, t)

The energy-momentum tensor is parametrised by 10 variables
(i) the average density n(x, t) given by < 1 >,
(ii) the average velocity ui(x, t),
(iii) the root mean square velocity giving T (x, t), and
(iv) the five independent traceless second velocity moment
giving pij(x, t), the shear stress tensor.
In a CFT, n(x, t) is determined by T (x, t), in order to reproduce
local equilibrium properties.
Boltzmann equation is equivalent to coupled local equations
for infinite velocity moments. Exceptionally, the variables
n(x, t), u(x, t), T (x, t) follow usual hydrodynamic equations
coupling only to the shear-stress tensor pij(x, t) and the
partially traced third velocity moment Si(x, t), the heat current.
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Conservative solutions of the Boltzmann equation (1/2)
.

.

In the conservative solutions, all higher moments have special
solutions where they are just algebraic functions of the 10
variables of the energy-momentum tensor

(
n,u,pij

)
(x, t) and

their spatial derivatives in the local inertial frame where the
mean velocity vanishes [AM, Iyer]. Thus they have no
independent dynamical parts. For example, in a monoatomic
gas

Si =
15pR
2B(2)

∂T
∂xi

+
3

2B(2)

(
2RT

∂pir

∂xr
+ 7Rpir

∂T
∂xr

− 2pir

ρ

∂p
∂xr

)
+.... ,

where p is the pressure and B(2) is given by the collision
kernel.

The ten variables
(

n,u,pij

)
(x, t) obey a closed set of

dynamical equations where all the phenomenological
coefficients are determined by the heat kernel of the
Boltzmann equation.
Further, there are special purely hydrodynamic solutions
where pij(x, t) is an algebraic solution of the hydrodynamic
variables,

pij(x, t) =
p

B(2) (
∂um

∂xn
+

∂un

∂xm
− 2

3
δmn

∂ur

∂xr
) + ... ,

giving the known normal solutions discovered earlier and
leading to determination of all transport coefficients [Enskog,
Chapman, Burnett, Stewart].
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Conservative solutions of the Boltzmann equation (2/2)
.

.

Covariantization :

ui → uµ, with uµη
µνuν = −1, and u0 > 0.

πij → πµν ,with πµνη
µν = 0 and πµνuν = 0,

time derivative → uµ∂µ,

spatial derivative → P ν
µ ∂ν ,with the spatial projector

P ν
µ = uµuν + δνµ.

The phenomenological equations of uµ,T and πµν can be
determined on general grounds. We expect that the
conservative solutions will form the universal sector at large N
and λ, where the semiclassical Boltzmann equation loses its
validity. All the universal phenomenological coefficients will be
determined by gravity. Caution : Many coefficients do not
vanish at strong coupling.
One can also argue that any arbitrary nonequilibrium state
that thermalizes approximates an appropriate conservative
solution at sufficiently late time. Thus these phenomenological
equations hold for general irreversible processes which are
independent of initial state dynamics. Caution : Useful only at
strong coupling
Conjecture : The phenomenological equations of the
energy-momentum tensor give all solutions in pure gravity
which equilibrates thermally with a regular future horizon for
appropriate values of the phenomenological coefficients. [AM,
Iyer]
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Construction

Principles of general Weyl-covariant phenomenology (1/3)
.

.

In gravity, it is natural to use Landau definitions :

uµ : velocity of energy transport,
T : tµνuµuν = (3/4)(πT )4 is local energy density.

Derivatives ∂µ can be promoted to Weyl-covariant derivatives
with a Weyl connection made from the hydrodynamic variables
only [Loganayagam]. As a result,u · ∂ is promoted to a
Weyl-covariant time-derivative D.
The full energy momentum tensor is

tµν = (πT )4
(

4uµuν + ηµν

)
+ πµν ,

where πµν captures all non-equilibrium corrections, is
traceless and satisfies uµπµν = 0.
Einstein’s equations imply ∂µtµν = 0. Also tµν is
Weyl-covariant.
Without loss of generality,
πµν = π

(h)
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The purely hydrodynamic part π(h)
µν is slowly varying

spatio-temporally and can be systematically obtained using
Weyl-covariance only in the derivative expansion (T times the
length scale of variation). Up to second order in derivative
expansion in gravity

π(h)
µν = −2(πT )3σµν + (2 − ln 2)(πT )2Dσµν

+2(πT )2
(
σ α
µ σαν −

1
3

Pµνσαβσ
αβ

)
+ ln 2(πT )2(σ α

µ ωαν + σ α
ν ωαµ) + O(ϵ3),

where

σµν =
1
2

P α
µ P β

ν (∂αuβ + ∂βuα)−
1
3

Pµν(∂ · u),

ωµν =
1
2

P α
µ P β

ν (∂αuβ − ∂βuα).

π
(nh)
µν is slowly varying spatially but not temporally near

equilibrium as quasinormal modes of gravity indicate. Its
equation of motion can be constructed phenomenologically
using both derivative and amplitude expansion (the typical
value/equilibrium pressure), where we sum up time-derivatives
at each order. Also π

(nh)
µν = 0, because gravity also admits

purely hydrodynamic limit. Its equation is Weyl-covariant too.
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Up to some orders in derivative and amplitude expansion, the most general
equation for π(nh)

µν is( ∞∑
n=0

D(1,n)
R (πT )nDn

)
π(nh)
µν =

(πT )λ1

2

(
π(nh)α
µ σαν + π(nh)α

ν σαµ − 2
3

Pµνπ
(nh)
αβ σαβ

)
+
(πT )λ2

2

(
π(nh)α
µ ωαν + π(nh)α

ν ωαµ

)
−(πT )4

∞∑
n=0

n∑
m=0

n+m is even

D(2,n,m)
R (πT )n

n∑
a,b=0
a+b=n
|a−b|=m

[
DaπikDbπkj −

1
3
δijDaπpqDbπpq

]

+O(ϵ2δ, ϵδ2, δ3).

New non-hydrodynamic phenomenological coefficients : D(1,n)
R , D(2,n,m)

R , λ1,
λ2, ... (by definition these are dimensionless).
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Verification

Special case : Homogeneous relaxation from gravity
.

.

There are special purely non-hydrodynamic solutions which
are spatially homogeneous. Here uµ and T are constants, so
π
(h)
µν = 0. In a global inertial frame uµ = (1,0,0,0). Also in this

frame π
nh)
00 = π

(nh)
0i = π

(nh)
i0 = 0 and π

(nh)
ij (t), so the

conservation of energy and momentum are trivially satisfied.

The dual solutions of gravity in these special case can be
argued to be manifestly regular at the future horizon in ingoing
Eddington-Finkelstein coordinates [AM, Iyer]. We can show
that the metric is regular provided the equation for π(nh)

ij is
satisfied with D = d/dt . We also find
D(1,0)

R = −1,D(1,1)
R = (π/2) + (1/4) ln 2, etc.; D(2,0,0)

R = 1/2,
etc. A complicated explicit recursion relation can be derived
for D(1,n)

R ’s and D(2,n,m)
R ’s.

Connection to quasinomal modes : Consider the series

DR(ω) =
∞∑

n=0

D(1,n)
R (−iπTω)n,

and analytically continue it to the LHP of ω. If this series has
simple zeroes at discrete points in the LHP, then the analytic
continuation of πij(ω) in LHP also has simple poles at those
points. This should reproduce all the quasinormal modes of
black branes when k = 0. We hope to verify this numerically.
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Significance and Open Questions
.

.

.
Significance of Homogeneous Relaxation
..

.

. ..

.

.

Homogeneous relaxation gives estimate of transition to
hydrodynamic regime.

At weak coupling, the poles in πij(ω) corresponding to
homogeneous relaxation are purely imaginary, but gravity
predicts an oscillating real part of the same magnitude. Is
there entropy current beyond hydrodynamics at strong
coupling?
Can be mapped to boost invariant expansion with same
quasinormal modes at linear order [Janik, Peschanski], at
non-linear order is there a qualitative change from exponential
approach to thermalization?

.
Open questions
..

.

. ..

.

.

What are the field-theoretic definitions of the general
phenomenological coefficients?
How to check the conjecture in gravity for general spatially
inhomogeneous non-hydrodynamic configurations? We are
trying to do this numerically.
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