Non-Minimal Kaluza-Klein Dark Matter

Henrik Melbéus

Royal Institute of Technology, Stockholm, Sweden

EPS-HEP 2011

Henrik Melbéus (KTH)

Non-Minimal Kaluza–Klein Dark Matter

▶ < Ē▶ Ē ∽ < < July 21, 2011 1 / 15

Outline

Kaluza–Klein Dark Matter

2 Phenomenology

- Collaborators:
 - Johan Bonnevier
 - Mattias Blennow
 - Alexander Merle
 - Tommy Ohlsson

-

< E.

Universal Extra Dimensions

- One of the most popular extra-dimensional extensions of the SM
- One or more flat extra dimensions
- All SM fields promoted to higher-dimensional fields

Universal Extra Dimensions

- One of the most popular extra-dimensional extensions of the SM
- One or more flat extra dimensions
- All SM fields promoted to higher-dimensional fields
- Remnant of translational invariance \Rightarrow Conservation of KK parity $(-1)^n$
- Lower bound: $R^{-1} > 300 \text{ GeV}$

Kaluza-Klein Dark Matter

- KK parity \Rightarrow the Lightest Kaluza–Klein Particle (LKP) is stable
 - Analogous to the LSP in SUSY models with R parity

Kaluza-Klein Dark Matter

- KK parity \Rightarrow the Lightest Kaluza–Klein Particle (LKP) is stable
 - Analogous to the LSP in SUSY models with R parity

•
$$m_{\mathsf{LKP}}\simeq R^{-1}=\mathcal{O}(1\,\,\mathsf{TeV})$$

Possible WIMP DM candidate

The LKP

- The identity of the LKP depends on the UED mass spectrum
- Minimal UED: B¹ is the LKP (Cheng, Matchev, Schmaltz [hep-ph/0204342])
 - Compare to assumptions regarding SUSY breaking terms
- Non-minimal UEDs could give other LKPs (Flacke, Menon, Phalen [0811.1598])
- Possible WIMP DM candidates:
 - ▶ B¹
 - ► Z¹
 - ► *H*¹
 - ▶ ν¹

The LKP

- The identity of the LKP depends on the UED mass spectrum
- Minimal UED: B¹ is the LKP (Cheng, Matchev, Schmaltz [hep-ph/0204342])
 - Compare to assumptions regarding SUSY breaking terms
- Non-minimal UEDs could give other LKPs (Flacke, Menon, Phalen [0811.1598])
- Possible WIMP DM candidates:
 - ▶ B¹
 - ► Z¹
 - ► H¹
 - ▶ ν¹ Excluded by direct detection (Servant, Tait [hep-ph/0209262])

• • = • • =

• The masses giving the correct relic abundance have been calculated to different levels of precision:

- E

- The masses giving the correct relic abundance have been calculated to different levels of precision:
- B¹
 - ► Coannihilations with all level-1 KK particles: m_{B1} ≃ 500 1600 GeV (Burnell, Kribs [hep-ph/0509118], Kong, Matchev [hep-ph/0509119])
 - Adding resonances from second KK-level shifts the preferred mass to a somewhat higher value

(Belanger, Kakizaki, Pukhov [1012.2577])

• • = • • =

- The masses giving the correct relic abundance have been calculated to different levels of precision:
- B¹
 - Coannihilations with all level-1 KK particles: m_{B1} ~ 500 1600 GeV (Burnell, Kribs [hep-ph/0509118], Kong, Matchev [hep-ph/0509119])
 - Adding resonances from second KK-level shifts the preferred mass to a somewhat higher value

(Belanger, Kakizaki, Pukhov [1012.2577])

• Z¹

► Coannihilations with all level-1 KK particles: m_{Z1} ≃ 1800 — 2500 GeV (Arrenberg, Baudis, Kong, Matchev, Yoo [0805.4210])

• • = • • = •

- The masses giving the correct relic abundance have been calculated to different levels of precision:
- B¹
 - Coannihilations with all level-1 KK particles: m_{B1} ~ 500 1600 GeV (Burnell, Kribs [hep-ph/0509118], Kong, Matchev [hep-ph/0509119])
 - Adding resonances from second KK-level shifts the preferred mass to a somewhat higher value

```
(Belanger, Kakizaki, Pukhov [1012.2577])
```

• Z¹

▶ Coannihilations with all level-1 KK particles: m_{Z¹} ≃ 1800 — 2500 GeV (Arrenberg, Baudis, Kong, Matchev, Yoo [0805.4210])

*h*¹

• Without coannihilations: $m_{h^1} \simeq 3$ TeV (preliminary)

超す イヨト イヨト

Direct Detection

● B¹:

- ▶ $\sigma_{B^1,p}\simeq 10^{-6}~{
 m pb}$ for $m_{B^1}=1~{
 m TeV}$ (Cheng, Feng, Matchev [hep-ph/0207125])
- Possibly detectable, depending on the KK mass spectrum

Direct Detection

• B¹:

- $\sigma_{B^1, p} \simeq 10^{-6}~{
 m pb}$ for $m_{B^1} = 1~{
 m TeV}$ (Cheng, Feng, Matchev [hep-ph/0207125])
- Possibly detectable, depending on the KK mass spectrum
- Z^1 :
 - ▶ $\sigma_{Z^1,p} \simeq 10^{-8}~{
 m pb}$ for $m_{B^1}=2~{
 m TeV}$ (Arrenberg, Baudis, Kong, Matchev, Yoo [0805.4210])
 - Much more difficult to detect

• • = • • = •

Direct Detection

B¹: σ_{B¹,p} ≃ 10⁻⁶ pb for m_{B¹} = 1 TeV (Cheng, Feng, Matchev [hep-ph/0207125]) Possibly detectable, depending on the KK mass spectrum Z¹: σ_{Z¹,p} ≃ 10⁻⁸ pb for m_{B¹} = 2 TeV (Arrenberg, Baudis, Kong, Matchev, Yoo [0805.4210]) Much more difficult to detect H¹:

Unknown, but presumably small due to the large preferred mass

• • = • • = •

• Detection of neutrinos from the annihilation of WIMPs trapped in the Solar core

- - E

- Detection of neutrinos from the annihilation of WIMPs trapped in the Solar core
- B¹:
 - Large branching ratios into leptons
 - Possibly observable at IceCube (Hooper, Kribs [hep-ph/0208261])

- Detection of neutrinos from the annihilation of WIMPs trapped in the Solar core
- B¹:
 - Large branching ratios into leptons
 - Possibly observable at IceCube (Hooper, Kribs [hep-ph/0208261])
- Z¹:
 - Large branching ratio into W^+W^-
 - Not observable, due to suppression of the rate by its high mass (Flacke, Menon, Hooper, Dan, Freese [0908.0899], Blennow, H. M., Ohlsson [0910.1588])

- Detection of neutrinos from the annihilation of WIMPs trapped in the Solar core
- B¹:
 - Large branching ratios into leptons
 - Possibly observable at IceCube (Hooper, Kribs [hep-ph/0208261])
- Z¹:
 - Large branching ratio into W^+W^-
 - Not observable, due to suppression of the rate by its high mass (Flacke, Menon, Hooper, Dan, Freese [0908.0899], Blennow, H. M., Ohlsson [0910.1588])
- H^1 :
 - Scalar, too strongly constrained by direct detection to be observable in indirect neutrino signals

• • = • • =

Neutrinos From the Sun — B^1

 ⁽M. Blennow, H. M., T. Ohlsson [0910.1588])

Neutrinos from the Sun — Z^1

 ⁽M. Blennow, H. M., T. Ohlsson [0910.1588])

• Monoenergetic peak on top of the continuous spectrum

- Monoenergetic peak on top of the continuous spectrum
- *B*¹:
 - Potentially observable by future high-resolution Air Cherenkov Telescopes (Bergström, Bringmann, Eriksson, Gustafsson [hep-ph/0412001])
 - Additional contribution from $Z\gamma$ and ZH is small (Bertone, Jackson, Shaughnessy, Tait, Vallinotto [1009.5107])

A B > A B >

- Monoenergetic peak on top of the continuous spectrum
- B^1 :
 - Potentially observable by future high-resolution Air Cherenkov Telescopes (Bergström, Bringmann, Eriksson, Gustafsson [hep-ph/0412001])
 - Additional contribution from $Z\gamma$ and ZH is small (Bertone, Jackson, Shaughnessy, Tait, Vallinotto [1009.5107])
- Z¹:
 - Similar conclusions as for B^1 , even though Z^1 is twice as massive
 - (J. Bonnevier, H. M., A. Merle, T. Ohlsson [1104.1430])

• • = • • = •

(J. Bonnevier, H. M., A. Merle, T. Ohlsson [1104.1430])

Henrik Melbéus (KTH)

Summary

- Possible non-minimal KKDM candidates are the B^1 , Z^1 and H^1
- B¹: Possibly detectable in direct detection experiments, as well as indirect neutrino and gamma-ray searches
- Z¹: Heavier than B¹, and hence harder to detect, but perhaps possible in gamma-ray searches
- H^1 : Even heavier, and more difficult to detect

The End

- The End!
- Thank you for listening!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >