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QUARK MASSES ..
.. are fundamental parameters of SM. However,
color confinement prohibits their direct determina-
tion. Instead, we use some observable depending on
mq in some theory and compare its theoretical pre-
diction with the corresponding exp. value. ⇒ They
are theory dependent and depend on renormalization
scheme and scale. We use current quark masses (=
as they occur in QCD Lagrangian) in MS scheme.

LIGHT QUARK MASSES
For the determination of the light quark masses
there are used the following types of the methods

QCD sum rules (SR)
Lattice QCD (LQCD)
Effective field theories for QCD (EFT)

Whereasms and the isospin averaged m̂ = mu+md
2

are determined independently from both SR and
LQCD with a reasonable precision with compatible
results. For determination of individualmu andmd

they both need additional input (mainly from ChPT).
[Because of elmag. corrections to isospin breaking observables.]

CHIRAL PERTURBATION THEORY

Among these EFT, ChPT plays a prominent role. Its
use is affected by the following disadvantages:
• non-renormalizable theory⇒ Lagrangian con-

tains∞ number of LECs: F0, B0, Li, Ci, . . .

• mq scaling – in all physical quantities 3 B0mq

• Kaplan-Manohar ambiguity of changing mu →
mu + βmdms (cycl.) with L6,7,8 and Cis

⇒ ChPT can determine only quark mass ratios and
needs some input fixing the physical definition of the
masses (large NC , lattice, . . . ). For mq determina-
tion we combine isosymmetric results from SR and
LQCD with an isospin-breaking study from ChPT.

η → 3π

η → 3π decay possible only in the isospin breaking
world. Moreover, elmag. effects are there very small
⇒ its amplitude proportional directly to md −mu,

A(s, t, u) =
√
3

4RM(s, t, u) with R = ms−m̂
md−mu .

⇒Measuring its decay rate Γ one can determine R.
In a good approximation mπ± = mπ0 , then the 0 :
η → 3π0 decay is related to x : η → π+π−π0.

η → 3π IN ChPT
However, computation of M in ChPT problematic:
• Slow chiral convergence – from exp. Γ we have
RLO = 19.1, RNLO = 31.8, RNNLO = 41.3.
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• Dalitz parameters discrepancy
KLOE [2] ChPT [3]

a −1.09± 0.02 −1.271± 0.075
b 0.124± 0.012 0.394± 0.102
d 0.057± 0.017 0.055± 0.057
f 0.14± 0.02 0.025± 0.160
g ∼ 0 0
α −0.030± 0.005 0.013± 0.016
β ? −0.002± 0.025

ORIGIN OF THE DISCREPANCY?
Possible explanations of this discrepancy
• incorrect determination of NNLO LECs Ci
• higher-order final state rescatterings
• influence of slow convergence of ππ scatt., . . .

This has inspired alternative approaches taking dif-
ferent assumptions than ChPT [4, 5, 6, 7]. However,
they do not fix normalization⇒ unavoidable to match to ChPT
⇒ need to find a region where both these approaches compatible.

INFLUENCE OF THE CiS
NNLO M depend on subsets of 102 Cis, whose de-
termination is needed before any reliable prediction.
But many Cis just estimated (resonance saturation, . . . ).
Ci-independent relations of Dalitz parameters:

1.
(
4(b+ d)− a2 − 16α

)∣∣
C

= 0

2.
(
a3 − 4ab+ 4ad+ 8f − 8g

)∣∣
C

= 0 (CIR)
3. β|C = 0

KLOE [2] ChPT [3] NREFT [4]
rel1 0.02± 0.12 −0.03± 0.72 0.35± 0.13
rel2 0.12± 0.21 −0.13± 1.4 0.44± 0.20

103β ? −2± 25 −4.2± 0.7

ChPT and KLOE values seems to be in a good cor-
respondence⇒ Exp. re-measurement of these com-
binations desirable in order to test this explanation.

OUR PARAMETRIZATION ..
.. is based on basic assumptions of QFT together
with some hierarchy of various contributions to M
(inspired by a very basic chiral counting and/or nu-
merical studies). It takes into account two final-state
rescatterings and can include full isospin violation
mπ± 6= mπ0 . By setting its parameters to specific
values it can reproduce the NNLO ChPT M exactly.

M+−0(s, t, u) = P (s, t, u) + U(s, t, u),

P = AxM
2
η +Bx(s− s0) + Cx(s− s0)2 + Ex(s− s0)3

+Dx[(t− s0)2 + (u− s0)2] + Fx[(t− s0)3 + (u− s0)3]

U = unitary contribution.

SECOND ANALYSIS
A different analysis can be performed assuming:

1. physicalM can be reproduced by our parametr.
2. ChPT determination ofM reliable at least in the

region specified below (fixing normalization)

FIXING NORMALIZATION
In order to fix the normalization of M we have to
find the region, where its chiral convergence is fast.
At NLO, 3 points on cut s = u accidentally coincide

a. M is of order O(m2
π) (Adler zero),

b. ReM = 0,
c. higher order corrections to the slope are small,

It is usually employed for normalization. However,
this proves not to be the case at NNLO. Using our
parametr. and NNLO ChPT M ⇒ the prescription
• fit on t = u cut
• match only Im of ChPT under phys. threshold
• use the interpolation between order-by-order

and “resummed" fits of our parametr. to ChPT

SECOND ANALYSIS: RESULTS

Dotted lines –
order-by-order fit
Dashed lines –
“resummed" fit
Solid line – final
fit

⇒ R = 37.8± 3.3 [Disp.+KLOE].
The sources of error:
• of the exp. distribution – for now dominant
• of the analytic continuation of the distribution
• from fixing the normalization

FIRST ANALYSIS
Assume that all the discrepancy can be included
into a small real polynomial ∆P (as e.g. a change of Ci
values).⇒We add ∆P to NNLO ChPT M and fit it
from KLOE→ “correctedM”. We find that the cor-
rections are indeed small (on the phys. region) – it
corresponds to the change of “our parameters” in P :

A B C D E F

P (4) 0.46(1) 1.95(10) −0.6(2) 1.04(2)

P (6) 0.58(1) 2.4(2) 0.3(34) 1.6(24) 5(150) −4(84)

P
(6)
corr. 0.575(6) 1.99(4) −6.8(3) 0.94(3) −31(3) 20(1)

Even without changing the unitarity part, Mcorr.

reproduces well KLOE. The value of R is shifted
R = 37.7± 2.8 [ChPT+Disp.+KLOE].

(The error estimated from ChPT convergence of R.)
Here we have imposed no definite explanation of the
discrepancy, just parametrized it by the polynomial.
However, if the discrepancy could be included into the change of
theCis, relations (CIR) have to be fulfilled. Interestingly rel2 ⇒
(∆E+2∆F = 0) and we observe ∆E ∼ −36 and ∆F ∼ 24.

COMBINED RESULTS
Since the dominant sources of errors in both analysis
were different (and the values are compatible), we
can combine them into

R = 37.7± 2.2.

Another isospin breaking parameter Q2 =
m2
s−m̂

2

m2
d
−m2

u
. Using ms

m̂ ∼ 28

from lattice,Q = 23.3± 0.8.

Combining various constraints (in MS, at µ = 2 GeV)

⇒ The currently most precise values of mµ=2GeV
u,d :

mu = (2.2± 0.6) MeV, md = (4.6± 0.5) MeV.
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Our value of R – uncertainty ∆R, uncertainty ∆ms
FLAG m̂ Sum rules m̂ ChPT md/mu

DALITZ PARAMETRIZATION

M (normalized to the center of Dalitz plot) usually parametrized

|Mx(x, y)|2

|Mx(0)|2
= 1 + ay + by2 + dx2 + fy3 + gx2y + . . . ,

|M0(x, y)|2

|M0(0)|2
= 1 + 2αz + 2βy(3z − 4y2) + . . . ,

x =
√
3(u−t)

2mη(mη−3mπ)
, y =

3(s0−s)
2mη(mη−3mπ)

, z = x2 + y2.

REFERENCES
[1] K. Kampf, M. Knecht, J.

Novotny, M. Zdrahal, [arXiv:
1103.0982].

[2] F. Ambrosino et al. [KLOE],
JHEP 0805 (2008) 006.

[3] J. Bijnens, K. Ghorbani, JHEP
0711 (2007) 030.

[4] S. P. Schneider et al., JHEP
1102 (2011) 028.

[5] J. Kambor, C. Wiesendanger,
D. Wyler, Nucl. Phys. B465
(1996) 215-266.

[6] A. V. Anisovich, H. Leutwyler,
Phys. Lett. B375 (1996) 335-
342.

[7] G. Colangelo, S. Lanz, E.
Passemar, PoS CD09 (2009)
047.


