

DETERMINATION OF THE m_u AND m_d QUARK MASSES FROM $\eta \rightarrow 3\pi$ DECAY

Martin Zdráhal (IPNP, Charles University in Prague, Czech Republic) Work presented in [1].

QUARK MASSES ...

.. are fundamental parameters of SM. However, color confinement prohibits their direct determination. Instead, we use some observable depending on m_q in some theory and compare its theoretical prediction with the corresponding exp. value. \Rightarrow They are theory dependent and depend on renormalization scheme and scale. We use *current quark masses* (= as they occur in QCD Lagrangian) in MS scheme.

ORIGIN OF THE DISCREPANCY?

Possible explanations of this discrepancy

- incorrect determination of NNLO LECs C_i
- higher-order final state rescatterings
- influence of slow convergence of $\pi\pi$ scatt., ...

This has inspired alternative approaches taking different assumptions than ChPT [4, 5, 6, 7]. However, they do not fix normalization \Rightarrow unavoidable to match to ChPT \Rightarrow need to find a region where both these approaches compatible.

INFLUENCE OF THE C_i **S**

NNLO M depend on subsets of 102 C_i s, whose de-

OUR PARAMETRIZATION ...

.. is based on basic assumptions of QFT together with some hierarchy of various contributions to M(inspired by a very basic chiral counting and/or numerical studies). It takes into account two final-state rescatterings and can include full isospin violation $m_{\pi^{\pm}} \neq m_{\pi^0}$. By setting its parameters to specific values it can reproduce the NNLO ChPT *M* exactly.

 $M_{+-0}(s, t, u) = P(s, t, u) + U(s, t, u),$ $P = A_x M_\eta^2 + B_x (s - s_0) + C_x (s - s_0)^2 + E_x (s - s_0)^3$ $+ D_x[(t - s_0)^2 + (u - s_0)^2] + F_x[(t - s_0)^3 + (u - s_0)^3]$ U = unitary contribution.

SECOND ANALYSIS

LIGHT QUARK MASSES

For the determination of the light quark masses there are used the following types of the methods

- QCD sum rules (SR)
- Lattice QCD (LQCD)
- Effective field theories for QCD (EFT)

Whereas m_s and the isospin averaged $\hat{m} = \frac{m_u + m_d}{2}$ are determined independently from both SR and LQCD with a reasonable precision with compatible results. For determination of individual m_u and m_d they both need additional input (mainly from ChPT). [Because of elmag. corrections to isospin breaking observables.]

CHIRAL PERTURBATION THEORY

Among these EFT, ChPT plays a prominent role. Its use is affected by the following disadvantages:

- non-renormalizable theory \Rightarrow Lagrangian contains ∞ number of LECs: $F_0, B_0, L_i, C_i, \ldots$
- m_q scaling in all physical quantities $\ni B_0 m_q$
- Kaplan-Manohar ambiguity of changing $m_u \rightarrow$ $m_u + \beta m_d m_s$ (cycl.) with $L_{6,7,8}$ and C_i s
- \Rightarrow ChPT can determine only quark mass ratios and

termination is needed before any reliable prediction. But many C_i s just estimated (resonance saturation, ...). C_i -independent relations of Dalitz parameters:

1.
$$(4(b+d) - a^2 - 16\alpha)|_C = 0$$

2. $(a^3 - 4ab + 4ad + 8f - 8g)|_C = 0$ (CIR)
3. $\beta|_C = 0$

	KLOE [2]	ChPT [3]	NREFT [4]
rel ₁	0.02 ± 0.12	-0.03 ± 0.72	0.35 ± 0.13
rel ₂	0.12 ± 0.21	-0.13 ± 1.4	0.44 ± 0.20
$10^3\beta$?	-2 ± 25	-4.2 ± 0.7

ChPT and KLOE values seems to be in a good correspondence \Rightarrow Exp. re-measurement of these combinations desirable in order to test this explanation.

FIRST ANALYSIS

Assume that all the discrepancy can be included into a small real polynomial ΔP (as e.g. a change of C_i) values). \Rightarrow We add ΔP to NNLO ChPT M and fit it from KLOE \rightarrow "corrected M". We find that the corrections are indeed small (on the phys. region) – it A different analysis can be performed assuming:

- . physical M can be reproduced by our parametr.
- 2. ChPT determination of M reliable at least in the region specified below (fixing normalization)

FIXING NORMALIZATION

In order to fix the normalization of M we have to find the region, where its chiral convergence is fast. At NLO, 3 points on cut s = u accidentally coincide a. M is of order $O(m_{\pi}^2)$ (Adler zero),

b. Re M = 0,

c. higher order corrections to the slope are small, It is usually employed for normalization. However, this proves not to be the case at NNLO. Using our parametr. and NNLO ChPT $M \Rightarrow$ the prescription • fit on t = u cut

- match only Im of ChPT under phys. threshold
- use the interpolation between order-by-order and "resummed" fits of our parametr. to ChPT

needs some input fixing the physical definition of the masses (large N_C , lattice, ...). For m_q determination we combine isosymmetric results from SR and LQCD with an isospin-breaking study from ChPT.

$\eta \rightarrow 3\pi$

 $\eta \rightarrow 3\pi$ decay possible only in the isospin breaking world. Moreover, elmag. effects are there very small \Rightarrow its amplitude proportional directly to $m_d - m_u$, $\mathcal{A}(s,t,u) = \frac{\sqrt{3}}{4R} M(s,t,u) \text{ with } R = \frac{m_s - \hat{m}}{m_d - m_u}.$ \Rightarrow Measuring its decay rate Γ one can determine R. In a good approximation $m_{\pi^{\pm}} = m_{\pi^0}$, then the 0 : $\eta \to 3\pi^0$ decay is related to $x : \eta \to \pi^+ \pi^- \pi^0$.

$\eta \rightarrow 3\pi \text{ IN ChPT}$

However, computation of M in ChPT problematic:

• Slow chiral convergence – from exp. Γ we have $R_{\rm LO} = 19.1, R_{\rm NLO} = 31.8, R_{\rm NNLO} = 41.3.$

corresponds to the change of "our parameters" in P :									
	A	В	C	D	E	F			
$P^{(4)}$	0.46(1)	1.95(10)	-0.6(2)	1.04(2)					
$P^{(6)}$	0.58(1)	2.4(2)	0.3(34)	1.6(24)	5(150)	-4(84)			
$P_{\rm corr.}^{(6)}$	0.575(6)	1.99(4)	-6.8(3)	0.94(3)	-31(3)	20(1)			
Even without changing the unitarity part, $M_{\rm corr.}$									
reproduces well KLOE. The value of R is shifted									
$R = 37.7 \pm 2.8$ [ChPT+Disp.+KLOE].									
(The error estimated from ChPT convergence of $R_{\rm o}$)									

Here we have imposed no definite explanation of the discrepancy, just parametrized it by the polynomial. However, if the discrepancy could be included into the change of the C_i s, relations (CIR) have to be fulfilled. Interestingly rel₂ \Rightarrow $(\Delta E + 2\Delta F = 0)$ and we observe $\Delta E \sim -36$ and $\Delta F \sim 24$.

$R = 37.8 \pm 3.3$ [Disp.+KLOE].

The sources of error:

[4] S. P. Schneider et al., JHEP

1102 (2011) 028.

- of the exp. distribution for now dominant
- of the analytic continuation of the distribution
- from fixing the normalization

COMBINED RESULTS

 \Rightarrow

Since the dominant sources of errors in both analysis were different (and the values are compatible), we can combine them into

$$R = 37.7 \pm 2.2$$

 -0.002 ± 0.025

 α

Another isospin breaking parameter $Q^2 = \frac{m_s^2 - \hat{m}^2}{m_s^2 - m_w^2}$. Using $\frac{m_s}{\hat{m}} \sim 28$ from lattice, $Q = 23.3 \pm 0.8$.

Combining various constraints (in \overline{MS} , at $\mu = 2 \,\text{GeV}$)

 \Rightarrow The currently most precise values of $m_{ud}^{\mu=2 \text{ GeV}}$:

 $m_u = (2.2 \pm 0.6) \,\mathrm{MeV}, \quad m_d = (4.6 \pm 0.5) \,\mathrm{MeV}.$

DALITZ PARAMETRIZATION

M (normalized to the center of Dalitz plot) usually parametrized

$$\frac{|M_x(x,y)|^2}{|M_x(0)|^2} = 1 + ay + by^2 + dx^2 + fy^3 + gx^2y + \dots,$$

$$\frac{|M_0(x,y)|^2}{|M_0(0)|^2} = 1 + 2\alpha z + 2\beta y(3z - 4y^2) + \dots,$$

$$x = \frac{\sqrt{3}(u-t)}{2m_n(m_n - 3m_\pi)}, \ y = \frac{3(s_0 - s)}{2m_n(m_n - 3m_\pi)}, \ z = x^2 + y^2.$$

REFERENCES

- [5] J. Kambor, C. Wiesendanger, K. Kampf, M. Knecht, J. Novotny, M. Zdrahal, [arXiv: D. Wyler, Nucl. Phys. B465 1103.0982]. (1996) 215-266. [2] F. Ambrosino et al. [KLOE], [6] A. V. Anisovich, H. Leutwyler, JHEP 0805 (2008) 006. Phys. Lett. **B375** (1996) 335-342. [3] J. Bijnens, K. Ghorbani, JHEP **0711** (2007) 030. [7] G. Colangelo, S. Lanz, E.
 - Passemar, PoS CD09 (2009) 047.