

Three-dimensional Kaon Source Extraction from STAR Experiment at RHIC

Michal Šumbera NPI ASCR Prague (for the STAR Collaboration)

Outline

- Why and how to extract the source shape?
- ID source extraction: previous and recent results
- Kaon data analysis details
- 3D source shape analysis: Cartesian surface spherical harmonic decomposition technique
- 3D source function extraction: correlation moments fitting
- Comparison to thermal blast wave model

Conclusions

Source imaging

Technique devised by D. Brown and P. Danielewicz PLB398:252, 1997 PRC57:2474, 1998

Kernel is independent of freeze-out conditions Inversion of linear integral equation to obtain source function 1D Koonin-Pratt equation $C(q) - 1 = 4\pi \int drr^2 K(q,r) S(r)$ Encodes FSI Encodes FSI Source function (Distribution of pair separations in pair

⇒Model-independent analysis of emission shape (goes beyond Gaussian shape assumption)

rest frame)

Inversion procedure

$$R(q) \equiv C(q) - 1 = 4\pi \int dr r^2 K(q, r) S(r)$$
$$K(q, r) = \frac{1}{2} \int d\cos\theta_{\vec{q}, \vec{r}} \left[\left| \phi(\vec{q}, \vec{r}) \right|^2 - 1 \right]$$

Freeze-out occurs after last scattering. \Rightarrow Only Coulomb & quantum statistics effects included the kernel.

Previous 1D source imaging results

Observed long non-gaussian tails attributed to non-zero particle emision duration and contribution of long-lived resonances

STAR kaon 1D source shape result

M.Š. EPS-HEP 2011, Grenoble

7

3D source shape analysis Danielewicz and Pratt, Phys.Lett. B618:60, 2005

Expansion of R(q) and S(r) in Cartesian Harmonic basis

$$R(\vec{q}) = \sum_{l} \sum_{\alpha_{1}...,\alpha_{l}} R^{l}_{\alpha_{1}...,\alpha_{l}} \left(q\right) A^{l}_{\alpha_{1}...,\alpha_{l}} \left(\Omega_{q}\right) \quad (1)$$
$$S(\vec{r}) = \sum_{r} \sum_{\alpha_{1}...,\alpha_{l}} S^{l}_{\alpha_{1}...,\alpha_{l}} \left(r\right) A^{l}_{\alpha_{1}...,\alpha_{l}} \left(\Omega_{r}\right) \quad (2)$$

α_i = x, y or z x = out-direction y = side-direction z = long-direction

STAR

3D Koonin-Pratt:

 $T \alpha_1 \dots \alpha_l$

$$R(\vec{q}) = C(\vec{q}) - 1 = 4\pi \int dr^3 K(\vec{q}, \vec{r}) S(\vec{r})$$
(3)

Plug (1) and (2) into (3) $\Rightarrow R^{l}_{\alpha_{1}...\alpha_{l}}(q) = 4\pi \int dr r^{2} K_{l}(q,r) S^{l}_{\alpha_{1}...\alpha_{l}}(r)$ (4)

Invert (1)
$$\Rightarrow R_{\alpha_{1}...\alpha_{l}}^{l}(q) = \frac{(2l+1)!!}{l!} \int \frac{d\Omega_{q}}{4\pi} A_{\alpha_{1}...\alpha_{l}}^{l}(\Omega_{q}) R(\vec{q})$$

Invert (2) $\Rightarrow S_{\alpha_{1}...\alpha_{l}}^{l}(r) = \frac{(2l+1)!!}{l!} \int \frac{d\Omega_{r}}{4\pi} A_{\alpha_{1}...\alpha_{l}}^{l}(\Omega_{r}) S(\vec{r})$

$C^{0}(q_{inv})$ vs $C(q_{inv})$: comparison

'STAR

Extracting 3D source function

- Fit to the 3D correlation function with a trial functional form for S(r).
- Trial function: 4-parameter ellipsoid (3D Gaussian)

$$S^{G}(x,y,z) = \frac{l}{(2p)^{3}r_{x}r_{y}r_{z}} \exp\left[-\left(\frac{x^{2}}{4r_{x}^{2}} + \frac{y^{2}}{4r_{y}^{2}} + \frac{z^{2}}{4r_{z}^{2}}\right)\right]$$

• Since the 3D correlation function has been decomposed into its independent moments, this is equivalent to a simultaneous fit of 6 independent moments with the trial functional form.

Independent correlation moments

 $\mathbf{R}^{\ell}_{\alpha 1...\alpha \ell}, 0 \leq \ell \leq 4$

STAR

Extracted 3D Gaussian fit parameters: $\lambda = 0.48 \pm 0.01$ $r_x = (4.8 \pm 0.1)$ fm $r_y = (4.3 \pm 0.1)$ fm $r_z = (4.7 \pm 0.1)$ fm

Kaon correlation function profiles

¹SŢAR

Kaon vs. pion 3D source shape

STAR

Comparison to thermal BW model

Therminator (A. Kisiel *et al.*, Phys. Rev. C 73:064902 2006) basic ingredients:

- 1. Longitudinal boost invariance.
- Blast-wave expansion with transverse velocity profile semi-linear in transverse radius ρ: v_r(ρ)=(ρ/ρ_{max})/(ρ/ρ_{max}+v_t). Value of v_t =0.445 comes from the BW fits to particle spectra from Au+Au @ 200GeV: STAR, PRC 79:034909, 2009.
- 3. Thermal emission takes place at proper time τ , from a cylinder of infinite longitudinal size and finite transverse dimension ρ_{max} .

Freeze-out occurs at $\tau = \tau_0 + a\rho$. Particles which are emitted at (z, ρ) have LAB emission time $t^2 = (\tau_0 + a\rho)^2 + z^2$.

Emission duration is included via $\Delta \tau$.

Conclusions

- First model-independent extraction of kaon 3D source shape.
- Source function of mid-rapidity, low-momentum kaons from 20% most central Au+Au collisions at √s_{NN}=200 GeV is Gaussian – no significant non-Gaussian tail is observed.
- Comparison with Therminator model indicates kaon emission from a fireball with transverse dimension and lifetime which are consistent with values from two-pion interferometry.
- In contrast to pions, kaons are emitted instantaneously in the source element rest frame from a freeze-out hypersurface with no ρ - τ correlation.
- Kaons and pions may be subject to different dynamics owing to their emission over different timescales.

July 21, 2011

Backup slides

Kaon vs. pion 3D source shape

STAR

Cartesian harmonics basis

- Based on the products of unit vector components, $n_{\alpha 1} n_{\alpha 2}$, ..., $n_{\alpha l}$. Unlike the spherical harmonics they are real.
- Due to the normalization identity n²_x + n²_y + n²_z = 1, at a given l ≥ 2, the different component products are not linearly independent as functions of spherical angle.
- At a given ℓ, the products are spanned by spherical harmonics of rank ℓ' ≤ ℓ, with ℓ' of the same evenness as ℓ.

$$\begin{array}{c|c} \mathcal{A}_{x}^{(1)} = n_{x} & \mathcal{A}_{xyz}^{(3)} = n_{x} n_{y} n_{z} \\ \mathcal{A}_{xx}^{(2)} = n_{x}^{2} - 1/3 & \mathcal{A}_{xxxx}^{(4)} = n_{x}^{4} - (6/7)n_{x}^{2} + 3/35 \\ \mathcal{A}_{xy}^{(2)} = n_{x} n_{y} & \mathcal{A}_{xxxy}^{(4)} = n_{x}^{3} n_{y} - (3/7)n_{x} n_{y} \\ \mathcal{A}_{xxx}^{(3)} = n_{x}^{3} - (3/5)n_{x} & \mathcal{A}_{xxyy}^{(4)} = n_{x}^{2} n_{y}^{2} - (1/7)n_{x}^{2} - (1/7)n_{y}^{2} + 1/35 \\ \mathcal{A}_{xxy}^{(3)} = n_{x}^{2} n_{y} - (1/5)n_{y} & \mathcal{A}_{xxyz}^{(4)} = n_{x}^{2} n_{y} n_{z} - (1/7)n_{y} n_{z} \end{array}$$

July 21, 2011

Ellipsoid fit

⁻SŢAR

Momentum resolution correction

1D C(q) UnSmeared vs

C⁰ (q) UnSmeared)

1D C(q) Corrected vs C(q) UnSmeared

STAR