Two-Loop Mixed QCD-EW Virtual Corrections to the Drell-Yan Production of Z and W bosons

Roberto BONCIANI
Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier/CNRS-IN2P3/INPG, F-38026 Grenoble, France
Grenoble

In collaboration with: G. Degrassi and A. Vicini

Plan of the Talk

- Introduction
- Description of the Calculation

Introduction

- Drell-Yan production of Z and W bosons, $p(\bar{p}) \rightarrow Z \rightarrow l^{+} l^{-}$and $p(\bar{p}) \rightarrow W \rightarrow l \nu$, is a fundamental process for an accurate check of the SM at hadron colliders. It has a big cross section and it is very sensitive to the properties of the gauge bosons
- DY production of W is important for the determination of the W mass (transverse mass and p_{T} distributions), that is suppose to be measured at Tevatron with $\Delta M_{W} \sim 15 \mathrm{MeV}$ and at LHC even more precisely ($\Delta M_{W} \sim 7 \mathrm{MeV}$). This requires an accurate theoretical control on the distributions
- Background for processes of new physics as Z^{\prime} / W^{\prime} production (or $t \bar{t}$...)
- Possible determination of the luminosity (used in ratios of cross sections, as at Tevatron)
- Big impact on the distributions (and therefore on the determination of the W mass) comes from QCD ISR with QED final state radiation or real-virtual (FACTORIZED). At the level of $\Delta M_{W} \sim 10 \mathrm{MeV}$ also the mixed QCD-EW corrections may be important.
- Mixed QCD-EW corrections important also for the stabilization of the scale dipendence: NLO EW (partonic cross section) is leading order in α_{S} for what concerns the hadronic observable. The mixed corrections can reduce the scale variation

For these reasons we need a precise and reliable theoretical predicion.

Literature

QCD

- NLO/NNLO corrections to W / Z total production rate

Altarelli, Ellis, Martinelli '79; Altarelli, Ellis, Greco, Martinelli '84; Hamberg, van Neerven, Matsuura '91; van Neerven, Zijstra '92

- Fully differential NLO to $l \overline{l^{\prime}}$ (MCFM)

Campbell, Ellis '99

- Fully differential NNLO to $l \bar{l}^{\prime}$ (FEWZ)

Anastasiou, Dixon, Melnikov, Petriello '04; Melnikov, Petriello '06

- Resummation LL/NLL in p_{T}^{W} / M_{W} (RESBOS)
- NLO matched with resummation NLL in p_{T}^{W} / M_{W}

Bozzi, Catani, De Florian, Ferrera, Grazzini '09

- NLO with PS (MC@NLO and POWHEG

Balazs, Yuan '97

Bozzi, Catani, De Florian, Fertal Grazin 'ol

Frixione, Webber '02; Frixione, Nason, Oleari '07

Literature

EW

W production NLO

- Pole approximation
- Exact corrections
- Photon induced processes

Z production NLO

- Only QED
- Exact corrections
- Photon induced processes

Wackeroth, Hollik '97; Baur et al. '99

Zykunov et al. '01; Dittmaier, Krämer '02; Baur, Wackeroth '04; Arbuzov et al. '06; Carloni Calame et al. '06 (HORACE); Hollik, Kasprzik, Kniehl '08

Dittmaier, Krämer '05; Baur, Wackeroth '04; Carloni Calame et al. '06; Arbuzov et al. '07 ...

Baur et al. '98

Baur et al. '02; Zykunov et al. '07; Carloni Calame et al. '07 (HORACE)...

Carloni Calame et al. '07 (HORACE)

Literature

Mixed (non factorizable) QCD-EW
Z production

- In 2008 Kotikov, Kuhn and Veretin studied the mixed two-loop corrections to the form factors for a $U(1) \times U(1)$ and $S U(2) \times U(1)$ gauge theory with massive and massless gauge bosons.

Kotikov, Kuhn, Veretin '08

- Analytic calculation in terms of Harmonic Polylogarithms
- Peculiar structure of the corrections: factorization of the QCD and EW IR poles

Feynman Diagrams

- Since we concentrate on leptonic decay of the Z and W bosons \Rightarrow QCD corrections are only initial-state corrections. At NNLO they involve vertex virtual corrections.
- The EW corrections, however, connect initial and final state. For the moment we consider resonant contributions:

40 diagrams contribute to the Z production
44 diagrams contribute to the W production

Form Factors

The vertex corrections to the two processes in the Standard Model can be described in terms of two form factors:

$$
V^{\mu}\left(p_{1}, p_{2}\right)=G_{L}\left(q^{2}\right) \gamma^{\mu} \frac{\left(1+\gamma_{5}\right)}{2}+G_{R}\left(q^{2}\right) \gamma^{\mu} \frac{\left(1-\gamma_{5}\right)}{2}
$$

For the W production, we have $G_{R}\left(q^{2}\right)=0$.
The form factors $G_{L, R}\left(q^{2}\right)$ are expanded in power of the coupling constants α_{w} and α_{S} as follows:

$$
\begin{aligned}
G_{L, R}= & K_{Z, W}\left[G_{L, R}^{(0 l)}+\left(\frac{\alpha_{S}}{\pi}\right) G_{L, R}^{(1 l, Q C D)}+\left(\frac{\alpha_{w}}{\pi}\right) G_{L, R}^{(1 l, E W)}+\left(\frac{\alpha_{S}}{\pi}\right)^{2} G_{L, R}^{(2 l, Q C D)}\right. \\
& \left.+\left(\frac{\alpha_{w}}{\pi}\right)\left(\frac{\alpha_{S}}{\pi}\right) G_{L, R}^{(2 l, M i x)}+\ldots\right] \\
K_{Z}= & \frac{i g_{w}}{c_{w}} \quad K_{W}=\frac{i g_{w}}{\sqrt{2}} V_{u d}^{*}
\end{aligned}
$$

where, at the tree-level, we have:

$$
G_{Z, L}^{(0 l)}=\left(v_{u}+a_{u}\right), \quad G_{Z, R}^{(0 l)}=\left(v_{u}-a_{u}\right), \quad G_{W, L}^{(0 l)}=1
$$

Structure of the Calculation

- We generate the two-loop diagrams with FeynArts
- We interface FeynArts with the reduction and we extract automatically the form factor
- We project out the form factors (or we interfere with the tree level) and we perform the reduction to the Master Integrals
- The diagrams containing both the Z and W masses are approximated expanding in $\Delta M^{2}=M_{Z}^{2}-M_{W}^{2}$ (the first order in ΔM^{2} should be sufficient for phenomenological purposes). In this way we are reconducted to a problem with a single mass. The diagrams proportional to ΔM^{2} have squared propagators and they are reconducted to the Masters via the reduction process

Laporta Algorithm and Diff. Equations

Differential Equations for the MIs

Differential Equations for the MIs

For a given topology, when the system of identities is not reducible, we have a small number of MI's. In the case of three-point functions:

$$
F_{i}\left(Q^{2}, p_{1}^{2}, p_{2}^{2}\right)=\int d^{D} k_{1} d^{D} k_{2} \frac{S_{1}^{n_{1}} \cdots S_{q}^{n_{q}}}{D_{1}^{m_{1}} \cdots D_{t}^{m_{t}}}
$$

Using all the identity-relations (IBP's, LI, Sym) we can construct the following system of first-order linear differential equations:

$$
\frac{d F_{i}}{d Q^{2}}=\sum_{j} h_{j}\left(Q^{2}, m^{2}\right) F_{j}+\Omega_{i}
$$

where $i, j=1, \ldots, N_{M I s}$.
Ω_{i}
This term involves integrals of the class $I_{t-1, r, s}$ (sub-topologies) to be considered KNOWN

Form Factors: One-Loop Corrections

At the one-loop level we have for instance for the Z boson:

$$
\begin{aligned}
G_{Z ; L, R}= & C(d)\left(\frac{\mu^{2}}{M_{W}^{2}}\right)^{\frac{4-d}{2}} \delta_{c_{1} c_{2}} \mathcal{G}_{Z ; L, R} \\
\mathcal{G}_{Z, L}^{(1 l, Q C D)}= & C_{F} \frac{\left(v_{u}+a_{u}\right)}{2} f_{0}\left(d, x_{W}\right) \\
\mathcal{G}_{Z, L}^{(1 l, E W)}= & \frac{\left(v_{u}+a_{u}\right)}{2}\left[Q_{u}^{2} s_{w}^{2} f_{0}\left(d, x_{W}\right)+\frac{\left(v_{u}+a_{u}\right)^{2}}{c_{w}^{2}} f_{1}\left(d, x_{W}, x_{Z}\right)+\left|V_{u d}\right|^{2} f_{2}\left(d, x_{W}\right)\right] \\
& +c_{w}^{2}\left|V_{u d}\right|^{2} f_{3}(d, x W) \\
\mathcal{G}_{Z, R}^{(1 l, Q C D)}= & C_{F} \frac{\left(v_{u}-a_{u}\right)}{2} f_{0}\left(d, x_{W}\right) \\
\mathcal{G}_{Z, R}^{(1 l, E W)}= & \frac{\left(v_{u}-a_{u}\right)}{2}\left[Q_{u}^{2} s_{w}^{2} f_{0}\left(d, x_{W}\right)+\frac{\left(v_{u}-a_{u}\right)^{2}}{c_{w}^{2}} f_{1}\left(d, x_{W}, x_{Z}\right)\right]
\end{aligned}
$$

where :

$$
\begin{aligned}
f_{0}\left(d, x_{W}\right)= & \frac{1}{(d-4)^{2}}-\left[\frac{3}{4}-\frac{1}{2} H\left(0, x_{W}\right)\right] \frac{1}{(d-4)}+1-\frac{\zeta(2)}{4}-\frac{3}{8} H\left(0, x_{W}\right)+\frac{1}{4} H\left(0,0, x_{W}\right) \\
& -\left[1-\frac{3}{16} \zeta(2)-\frac{\zeta(3)}{4}-\left(\frac{1}{2}-\frac{\zeta(2)}{8}\right) H\left(0, x_{W}\right)+\frac{3}{16} H\left(0,0, x_{W}\right) \ldots\right](d-4)+\mathcal{O}(d-(11))^{2}, \\
f_{1}\left(d, x_{W}, x_{Z}\right)= & \frac{1}{64(d-4)}+\frac{1}{128} H\left(0, x_{W}\right)-\frac{1}{64 x_{Z}^{2}}\left[x_{Z}-2 x_{Z}^{2}-x_{Z}\left(1-2 x_{Z}\right) H\left(0, x_{Z}\right) \cdots\right.
\end{aligned}
$$

List of Master Integrals

van Neerven '86; Gonsalves '86; Fleischer, Kotikov, Veretin '99; Davydychev, Kalmykov '03; Aglietti, R. B. '03-'04 ...

Solution for the new Masters

$$
\begin{aligned}
& =\frac{1}{m^{2}} \sum_{i=-1}^{0} A_{i} \epsilon^{i}+\mathcal{O}(\epsilon) \\
& A_{-1}=\frac{1}{16 x}[H(0,-1,0, x)-H(0,-1,-1, x)] \\
& A_{0}=\frac{1}{16 x}[2 \zeta(2) H(0,-1, x)+5 H(0,-1,-1,-1, x)-2 H(0,-1,-1,0, x)-H(0,-1,0,-1, x) \\
& -2 H(0,-1,0,0, x)-H(0,0,-1,-1, x)+H(0,0,-1,0, x)] \\
& A_{-2}=\frac{1}{32} \\
& A_{-1}=\frac{1}{32}\left[5-2 H(-1, x)-\frac{2}{x} H(-1, x)\right] \\
& A_{0}=\frac{1}{32}\left\{19+2 \zeta(2)-2\left(1+\frac{1}{x}\right)[5 H(-1, x)-3 H(-1,-1, x)+H(0,-1, x)]\right\} \\
& A_{1}=\frac{1}{32}\left\{65+10 \zeta(2)-2 \zeta(3)+\left(1+\frac{1}{x}\right)[-2(19+2 \zeta(2)) H(-1, x)+30 H(-1,-1, x)-18 H(-1,-1,-1, x)\right. \\
& +6 H(-1,0,-1, x)-10 H(0,-1, x)+6 H(0,-1,-1, x)-2 H(0,0,-1, x)]\} \\
& A_{2}=\frac{211}{32}+\frac{9}{80} \zeta(2)^{2}+\frac{1}{16}\left\{19 \zeta(2)-5 \zeta(3)-\left(1+\frac{1}{x}\right)[(65+10 \zeta(2)-2 \zeta(3)) H(-1, x)-(57+6 \zeta(2)) H(-1,-1, x)\right. \\
& +(19+2 \zeta(2)) H(0,-1, x)+45 H(-1,-1,-1, x)-15 H(-1,0,-1, x)-15 H(0,-1,-1, x) \cdots]\}
\end{aligned}
$$

Harmonic Polylogarithms (HPLs)

- Weight $=1$

$$
H(0, x)=\ln x \quad H(-1, x)=\int_{0}^{x} \frac{d t}{1+t}=\ln (1+x) \quad H(1, x)=\int_{0}^{x} \frac{d t}{1-t}=-\ln (1-x)
$$

- Weight >1

If $\vec{a}=\overrightarrow{0}$ we define $H(\overrightarrow{0}, x)=\frac{1}{\omega!} \ln ^{\omega} x$. If $\vec{a} \neq \overrightarrow{0}$:

$$
H(\vec{a}, x)=\int_{0}^{x} d t f\left(a_{1}, x\right) H\left(\vec{a}_{\omega-1}, t\right) \quad \frac{d}{d x} H(\vec{a}, x)=f\left(a_{1}, x\right) H\left(\vec{a}_{\omega-1}, x\right)
$$

- The Algebra: $\omega_{\vec{a}} \times \omega_{\vec{b}}=\omega_{\vec{a}} \times \omega_{\vec{b}}$

$$
H(\vec{a}, x) H(\vec{b}, x)=\sum_{\vec{c}=\vec{a} \uplus \vec{b}} H(\vec{c}, x)
$$

- Integration by Parts

$$
H\left(m_{1}, \ldots, m_{q}, x\right)=H\left(m_{1}, x\right) H\left(m_{2}, \ldots, m_{q}, x\right)-\ldots+(-1)^{q+1} H\left(m_{q}, \ldots, m_{1}, x\right)
$$

- Connection with Nielsen's polylog and Spence functions:

$$
S_{n, p}(x)=H\left(\overrightarrow{0}_{n}, \overrightarrow{1}_{p}, x\right) \quad L i_{n}(x)=H\left(\overrightarrow{0}_{n-1}, 1, x\right)
$$

A.B.Goncharov, Math. Res. Lett. 5 (1998), 497-516.
E. Remiddi and J. A. M. Vermaseren, Int. J. Mod. Phys. A15 (2000) 725.

Generalized Harmonic Polylogs (GHPLs)

- Weight $=1$

In addition to the usual basis functions $g(0, x)=1 / x, g(1, x)=1 /(1-x), g(-1, x)=1 /(1+x)$, the following enlargement of the set is considered:

$$
\begin{aligned}
& g(\pm 4, x)=\frac{1}{4 \mp x}, \quad g(c, x)=\frac{1}{x-e^{\frac{i \pi}{3}}}, \quad g(\bar{c}, x)=\frac{1}{x-e^{\frac{-i \pi}{3}}}, \quad g(\pm r, x)=\frac{1}{\sqrt{x(4 \mp r)}} \\
& g(\mp 1-r, x)=\frac{1}{(1 \pm x) \sqrt{x(4+r)}}, \quad g(\mp 1+r, x)=\frac{1}{(1 \pm x) \sqrt{x(4-r)}}
\end{aligned}
$$

The weight 1 GHPLs are:

$$
\begin{aligned}
& H(\pm 4 ; x)=\mp \log (4 \mp x) \pm 2 \log 2, \quad H(c ; x)=\log (x-1 / 2-i \sqrt{3} / 2)-\log (-1 / 2-i \sqrt{3} / 2) \\
& H(\bar{c} ; x)=\log (x-1 / 2+i \sqrt{3} / 2)-\log (-1 / 2+i \sqrt{3} / 2), \quad H(-r ; x)=2 \log (\sqrt{x+4}+\sqrt{x})-\log 2 \\
& H(r ; x)=2 \arcsin (\sqrt{x} / 2), \quad H(-1-r ; x)=2 / \sqrt{3} \arctan (\sqrt{3 x /(4+x})), \ldots
\end{aligned}
$$

- Weight >1
$\vec{a}=\{0, \pm 1, \pm 4, c, \bar{c}, \pm r, \pm 1 \pm r\}$. If $\vec{a}=\overrightarrow{0}$ we define $H(\overrightarrow{0}, x)=\frac{1}{\omega!} \ln ^{\omega} x$. If $\vec{a} \neq \overrightarrow{0}$:

$$
H(\vec{a}, x)=\int_{0}^{x} d t g\left(a_{1}, x\right) H\left(\vec{a}_{\omega-1}, t\right) \quad \frac{d}{d x} H(\vec{a}, x)=g\left(a_{1}, x\right) H\left(\vec{a}_{\omega-1}, x\right)
$$

- The Algebra and the other properties of the HPLs are maintained
U. Aglietti and R. B., Nucl. Phys. B698 (2004) 277.

Checks

- Numerical checks
- Numerical checks on the Master Integrals using FIESTA
- Analytical checks
- Many Master were already used in other calculations
- We checked the QCD part against the two-loop calculation by van Neerven et al.
- The self energies match with Djouadi-Gambino
- We are checking the Z form factors against Kotikov-Kuhn-Veretin.

Conclusions

- Drell-Yan is one of the best studied processes in hadronic physics
- The theoretical description involved the effort of many groups and is done at the moment at NNLO + resummation for what concerns QCD. EW NLO corrections are available. At the moment the complete set of mixed QCD-EW corrections is not known
- We calculated analytically the virtual QCD-EW corrections for Z and W production in the resonant region
- The complete evaluation of the cross section needs the evaluation of the real emission

