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Plan of the Talk

® Introduction

® Description of the Calculation
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| ntroduction

¥

°

Drell-Yan production of Z and W bosons, p(p) — Z — [T~ and p(p) — W — lv,is a
fundamental process for an accurate check of the SM at hadron colliders. It has a big
cross section and it is very sensitive to the properties of the gauge bosons

DY production of W is important for the determination of the "W mass (transverse mass
and pr distributions), that is suppose to be measured at Tevatron with A My, ~ 15MeV
and at LHC even more precisely (AMy, ~ 7TMeV). This requires an accurate theoretical
control on the distributions

Background for processes of new physics as Z’ /W' production (or ¢t ...)

Possible determination of the luminosity (used in ratios of cross sections, as at Tevatron)

Big impact on the distributions (and therefore on the determination of the & mass)
comes from QCD ISR with QED final state radiation or real-virtual (FACTORIZED). At the
level of A My, ~ 10 MeV also the mixed QCD-EW corrections may be important.

Mixed QCD-EW corrections important also for the stabilization of the scale dipendence:
NLO EW (partonic cross section) is leading order in g for what concerns the hadronic
observable. The mixed corrections can reduce the scale variation

For these reasons we need a precise and reliable theoretical predicion.
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Literature

Mixed (non factorizable) QCD-EW

Z production

® |n 2008 Kotikov, Kuhn and Veretin studied the mixed two-loop corrections to the form
factors fora U(1) x U(1) and SU(2) x U(1) gauge theory with massive and massless
gauge bosons.

Kotikov, Kuhn, Veretin '08

#® Analytic calculation in terms of Harmonic Polylogarithms

® Peculiar structure of the corrections: factorization of the QCD and EW IR poles
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Feynman Diagrams

® Since we concentrate on leptonic decay of the Z and W bosons = QCD corrections are
only initial-state corrections. At NNLO they involve vertex virtual corrections.

® The EW corrections, however, connect initial and final state. For the moment we consider
resonant contributions:

2w

U

U A u g

40 diagrams contribute to the Z production 44 diagrams contribute to the W production
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Form Factors

The vertex corrections to the two processes in the Standard Model can be described in terms of
two form factors:

(d+7)
2

(1 —5)

+ GRr(g®) " 5

VH(p1,p2) = Gr(¢%) v*

For the W production, we have Gr(¢?) = 0.
The form factors G, r(g?) are expanded in power of the coupling constants a,, and ag as
follows:

Grr = Kzw [ con+ () era ™™ + (=2) ety + (%‘9)2 GELRcT]
I (o;w) (o;s) G(Lz’zéMm) e
Kz = %}w Kw = % wd
where, at the tree-level, we have:
G(ZO,ZI)J = (v + au) , G(ZO’% = (Vy — Qu) , G’g/?,l’)L Sl
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Structure of the Calculation

L I

We generate the two-loop diagrams with FeynArts
We interface FeynArts with the reduction and we extract automatically the form factor

We project out the form factors (or we interfere with the tree level) and we perform the
reduction to the Master Integrals

The diagrams containing both the Z and W masses are approximated expanding in
AM? = M%Z — M3, (the first order in AM? should be sufficient for phenomenological
purposes). In this way we are reconducted to a problem with a single mass. The

diagrams proportional to AM? have squared propagators and they are reconducted to
the Masters via the reduction process
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L aporta Algorithm and Diff. Equations

Solution of the algebraic system with a C program
Output: Relations that link Scalar Integrals to the Mis

A\ 4

IBPs, LI, Symm. rel.

® AIR - Maple package
(C. Anastasiou and A. Lazopoulos, JHEP 0407 (2004) 046)

PUBLIC $® FIRE - Mathematica package (A. V. Smirnov, JHEP 0810 (2008) 107)

PROGRAMS .
$® REDUZE - REDUZE2 C++/GiNaC packages

(C. Studerus, Comput. Phys. Commun. 181 (2010) 1293;
A. von Manteuffel and C. Studerus, in preparation)
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Differential Equations for the MIs
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Differential Equationsfor the MIs

For a given topology, when the system of identities is not reducible, we have a small number of
MI's. In the case of three-point functions:

n1 q
ST ... Sm

m1 m¢
D" ... Dj

Fi(Q2,p2,p2) = /deldeQ

Using all the identity-relations (IBP’s, LI, Sym) we can construct the following system of
first-order linear differential equations:

dQ2 Zh(@2 ) Fj 4+ Q

where ¢,5 =1,..., Nyrrs.

Q This term involves integrals of the class I;_1, s (sub-topologies) to
( be considered KNOWN

V. Kotikov, Phys. Lett. B254 (1991) 158; B259 (1991) 314; B267 (1991) 123.
E. Remiddi, Nuovo Cim. 110A (1997) 1435.
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Form Factors. One-Loop Corrections

At the one-loop level we have for instance for the Z boson:

o | 4=d
w 2
Gz.L,r = C(d) <M’(2/V> Scico 92,L,R
’LL+ u
GJLeP) = op T gy
u+ ay vy + ay)?
gL yE) = %{Qu 02 fo(dy o) + = o X £, 2, 52) + 1 Vasal F2 (s o)
+eo | Vual® f3(d, 2W)
gGLICD) - g Mfo(d,xm
_ r 2
Q(ll EW)  _ (Vu =) ) %u) [Qisi}fo(d,azw) + . C2au) fl(d,mw,wz)]
where :
fol(d = E 5 1ho 1 Q EHo 1y 0,0,
odew) = = |1 g HO W) e 1= S = CHO W) + H0,0,5w)
¢(3) (1 ¢(®2) 3
~[1- 22 - 22 - (5 - 52 ) HO.ow) + —H(0,0,aw)...] @ = 4) + O(d - @F
1 1 1 4
fild,zw,zz) = 64(d — 4) + 128H(0>$W) iy [tz — 227 —xz(1 -207)H(0,27) -
Z
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List of Master Integrals

1MI 1MI 1MI 1MI
P B B PO
T
Q- > P > >
P oS 0 @

van Neerven '86; Gonsalves '86; Fleischer, Kotikov, Veretin '99; Davydychev, Kalmykov '03; Aglietti, R. B. '03-'04 ....
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Solution for the new M asters

1 0 ’
= — Z A,L'E,L +O(€)

2
m= 4=—1

1

— —[H(O,—I,O,w)—H(O,—l,—l,x)}
16
1
— —[2@(2)H(0,—1,m)+5H(0,—1,—1,—1,a:)—2H(0,—1,—1,0,a:)—H(o,—l,o,—l,m)
6 x
—2H(O,—1,0,0,:c)—H(0,0,—l,—l,a:)—I—H(0,0,—l,O,w)]
2 . .
= Z A + O(e?)
P
1
32
1 2
—[5 — 2 —H(—l,m)]
32 x

3%{19 + 2¢(2)]- 2(1 + i)[5H(—1, z) — 3H(—1, —1, ) + H(0, —1, :c)]}

i{65 +10¢(2) — 2¢(3) + (1 + i)[—2(19 +2¢(2))H(—1,2) + 30H(—1, —1,z) — 18H(—1, —1, —1, z)
32 x

+6H(—1,0, —1,2) — 10H(0, —1,z) + 6H(0, —1, =1, ) — 2H (0,0, —1, x)] }

211 9 2 1 1

— + —¢@? + —{19¢(2) = 5¢(3) — (1+=)[(65 + 10¢(2) — 2¢(3)) H(—1,z) — (57 + 6¢(2))H(—1, -1, z)
32 80 16 x

+(19 + 2¢(2))H (0, —1, =) + 45H(—1, -1, —1, ) — 15H(—1,0, —1,z) — 15H(0, —1, —1, ) - - }}
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Har monic Polylogar ithms (HPL s)

» Weight=1
H(0,2) =1 H(l)/xdt 1(1—|—)H(1)/xdt In (1 — )
x)=Ilnzx —1,2) = ——— =1n x x) = ——— =—In(1 —=x
’ ’ o 1+t ’ o 1—t
» Weight > 1
If @ = 0 we define H(0,z) = X In¥ z. If @ # O
H@w) = [ dt flar,o) H(@aoor,t) ~—H(@2) = f(ar,2) H@om1,0)
0 XT

® The Algebra: w; x wp = wg X wy

H(d,z)H(b,z)= Y H( )
» Integration by Parts
H(mi,...mg,xz) = H(m1,x)H(m2,...,mg,z) — ... + (—1)q+1H(mq, ey M1, X)
» Connection with Nielsen’s polylog and Spence functions:
Sn.p(x) = HOn,1p,z) Lin(x)=H(O0p_1,1,x)

A.B.Goncharov, Math. Res. Lett. 5 (1998), 497-516.
E. Remiddi and J. A. M. Vermaseren, Int. J. Mod. Phys. A15 (2000) 725.
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Generalized Har monic Polylogs (GHPL s)

N Weight = 1
In addition to the usual basis functions g(0,z) = 1/z, g(1,2) =1/(1 — x), g(—1,z) = 1/(1 4+ x), the following
enlargement of the set is considered:

1 1 1 1
g(£4,z) = ——, g(c,z) = — w0 g(c,z) = =~ = ¢ g(£r, z) = ———=
4Fx ol 3 e 3 vVe(dFr)

g(F1+r, x)

1 1
1 —r, %) = , —
9(F ) (1+x)/x(4+ 1) (1+x)/x(4 —1r)

The weight 1 GHPLs are:
H(+4;z) = Flog(4F z) £ 2log2, H(c;z) =log(xz —1/2 — iv3/2) —log(—1/2 —iV3/2),

H(Ex) =log(x — 1/2 +iv3/2) —log (—1/2 +iV3/2), H(—r;z) = 2log(Vx + 4+ /x) — log 2,

H(r;z) = 2arcsin (vVz/2), H(—1—r;z) = 2/+/3 arctan (y/3z/(4 + x)),

9o Weight > 1
@={0,%1,+4,¢,¢ £r, £1 £ r}. If@ = 0 we define H(0,z) = =7 In* . If @ # O:

x d
H(aaw):A dtg(a’lyw)H(a”w—lat) d_H(a"7$):g(a’17$)H(a”w—law)
X
D The Algebra and the other properties of the HPLs are maintained

U. Aglietti and R. B., Nucl. Phys. B698 (2004) 277.
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Checks

® Numerical checks
® Numerical checks on the Master Integrals using FIESTA
® Analytical checks
Many Master were already used in other calculations
We checked the QCD part against the two-loop calculation by van Neerven et al.

The self energies match with Djouadi-Gambino

e o o o

We are checking the Z form factors against Kotikov-Kuhn-Veretin.

HEP2011, July 22, 2011 — p.17/18



Conclusions

® Drell-Yan is one of the best studied processes in hadronic physics

® The theoretical description involved the effort of many groups and is done at the moment

at NNLO + resummation for what concerns QCD. EW NLO corrections are available. At
the moment the complete set of mixed QCD-EW corrections is not known

® We calculated analytically the virtual QCD-EW corrections for Z and W production in the
resonant region

® The complete evaluation of the cross section needs the evaluation of the real emission
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