The super Particle IDentification System

MAGNET ASSEMBLY CABLES CABLES DIRC PMT SHIELD SUPERCONDUCTING SOLENOID DRIFT CHAMBER

> Side view of the SuperB detector → Progress Report <u>arXiv:1007.4241</u>

- Charged Particle IDentification (PID)
 - → Key tool for SuperB physics program
- Various PID inputs
 - dE/dx from tracking systems
 - Calorimeter information
 - Instrumented flux return for muons
 - Dedicated detector to separate π/K based on Cerenkov angle measurement
 - → The SuperB PID system
- Information combined in multi-variate estimators: the PID selectors
- In barrel region: the Focusing Detector of Internally Reflected Cherenkov light (FDIRC)
- In forward region: the Forward Time-Of-Flight (FTOF); optional detector, R&D ongoing

BABAR DIRC to the Superb FDIRC

- Identical Cherenkov γ production and transport
 - → Reuse DIRC quartz bars
- Complete camera re-design
 - → 12 quartz blocks (Fblock)
- 576 H-8500 MaPMTs
- channels New fast electronics

• Fblock design optimization: ray tracing + Geant4 simulation

- Many challenges to be dealt with:
 - Background, hit rate (1 MHz)
 - y ambiguities
 - Optical coupling Integration

• Expected performances: at least as good as the BaBar DIRC with lumi = 10^{36} cm⁻²s⁻¹

FTOF

- SLAC Cosmic Ray Telescope
 - → Main PID test facility

• 1^{rst} full-size test of a FDIRC sector to start in a few weeks

in the forward region

EMC

DCH

DIRC

- FTOF: a PID detector 12 thin quartz sectors ~30 ps accuracy for π/K ID @ 3 GeV/c

• Promising test @ CRT

• Sector prototype in 2012

G4 sim. + wfsim

Nicolas ARNAUD Laboratoire de l'Accélérateur LABORATOIRE Linéaire, for the SuperB PID group (narnaud@lal.in2p3.fr)