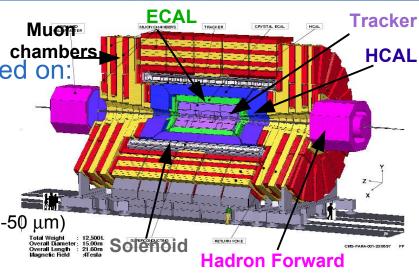
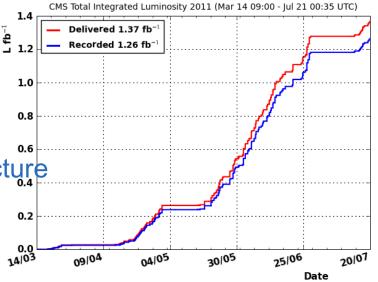


Alignment and Calibration of the CMS detector at the LHC



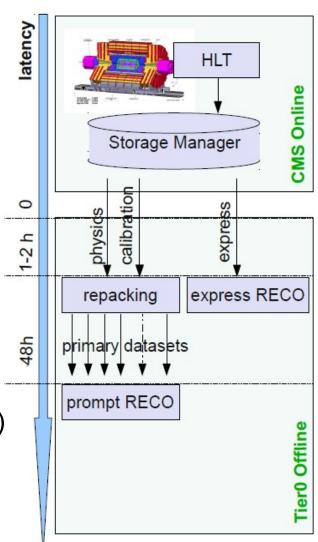

Gianluca Cerminara (CERN) on behalf of the CMS Collaboration

The CMS Detector *a* the LHC

- Compact Muon Solenoid (CMS):
 - compact 4π experiment \rightarrow design based on:
 - high intensity B field (3.8T superconducting solenoid)
 - redundant muon spectrometer
 - high precision silicon tracker ($\sigma_x = 15-50 \ \mu m$)
 - ~ 76M channels (Pixel + SiStrip)
 - high precision homogeneous EM calorimeter (ECAL)
 - $_{-}$ ~ 76k PbWO₄ scintillating crystals
 - hermetic calorimeter
- High level of complexity → very demanding in terms of calibration:
 - complex alignment&calibration infrastructure allows fast turn-around for analysis

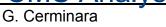
Alignment & Calibration: Outline

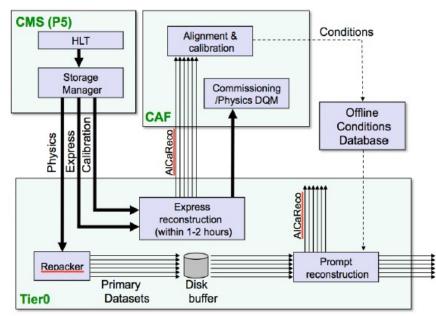
Optimal alignment & calibration of each sub-detector/component → full resolution and physics performance of the CMS detector A complex architecture for a complex task:


- prompt-calibration concept:
 - provide offline level conditions with very short latency
 - limited # of reprocessing per year \rightarrow ensure data "analysis ready"
- infrastructure for calibration workflows
 - dedicated datasets and streams for calibration purposes
 - dedicated CPU resources
- performance and status of the calibrations:
 - CAVEAT: just a few workflows covered \rightarrow not a complete review

Complementary talks:

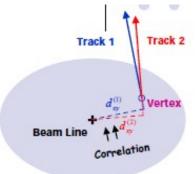
- Ia Iashvili (State Univ. of New York)
 Jet Energy Calibration and Transverse Momentum Resolution in CMS
- Jean-Roch Vlimant (UC Santa Barbara)
 Experience with CMS Offline and Computing in LHC Runs 2010-2011

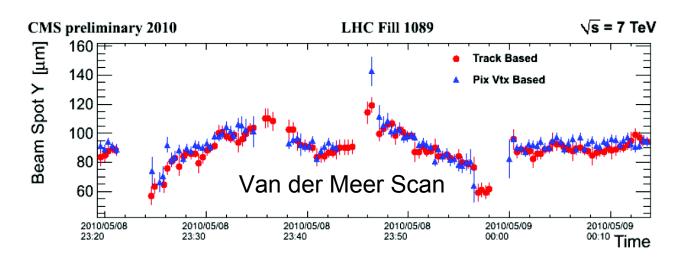

- Data streams & Tier0 workflows \rightarrow specialized for different tasks
- Depending on the latency
 - express \rightarrow prompt feedback & calibrations
 - short latency: 1-2 hours
 - ~40Hz bandwidth shared by:
 - calibration (1/2)
 - detector monitoring (1/4)
 - physics monitoring (¼)
 - Alignment & Calibration (AICa) streams
 - bulk data → sample for physics analysis (prompt reconstruction)
 - split in Primary Datasets (using High Level Trigger (HLT) decision)
 - reconstruction starts after 48h
 - \rightarrow get latest calibrations
 - writing ~300Hz



Prompt-Calibration Concept

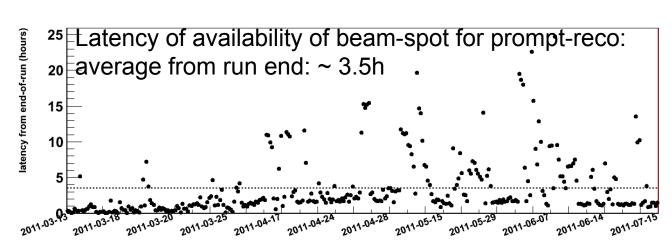
- Low latency workflows run immediately after the data-taking:
 - conditions which need continuous updates:
 - beam-spot position \rightarrow measured every 23s (= 1 Lumi Section)
 - tracker problematic channels \rightarrow respond to HV trips/noise
 - ECAL transparency corrections \rightarrow measured with laser pulses ٠
 - conditions which need monitoring
 - calorimeter problematic channels \rightarrow mask hot channels
 - tracker alignment \rightarrow monitor movements of large structures
- Update strategy based on delay between express and prompt reco ٠
 - AICa streams out of express used for calibration
 - compute conditions in time for prompt-reco
 - \rightarrow start 48h later
- Reduce need for offline re-reco ۲
- Dedicated resources @ CERN: ٠ CMS Analysis Facility (CA

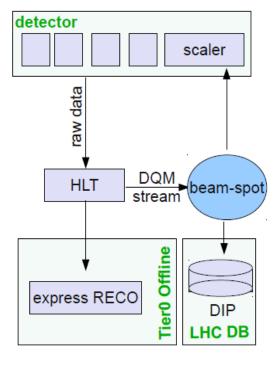




Example: Beam-Spot Measurement

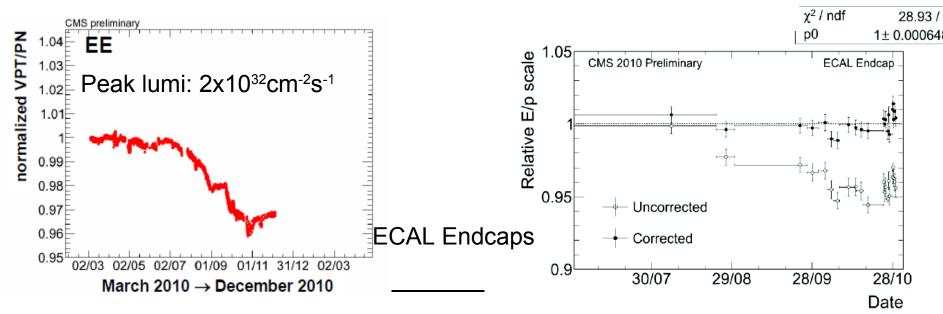
- Track beam-spot 3D position and width as a function of time.
- Two independent methods with complementary systematics
 - track based \rightarrow correlation of impact parameter and azimuthal angle (d₀- ϕ) (no unfolding of resolution required)
 - vertex based \rightarrow 3D fit to distribution of primary-vertexes

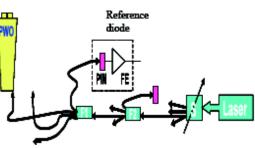

• Can deliver one measurement every 23s



Beam-spot workflows

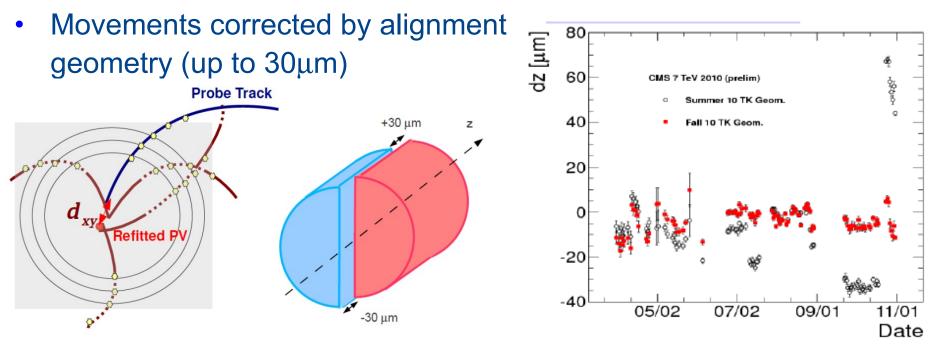
- Quasi-online workflow for HLT (and express) reconstruction
 - using DQM-dedicated stream (sampling @ ~ 100Hz max)
 - using track based and pixel-only vertexing \rightarrow very fast
 - 1 value every 5 Lumi-Section (~2 min)
- Runs also in prompt-calibration loop using tracks selected on Express stream
 - full statistics and tracking capabilities
 - 1 value every LS (=23s)





ECAL Transparency corrections

- ECAL PbWO₄ crystals temporary lose transparency due to irradiation (O(1%) in barrel ~10% in endcaps)
 - formation of colour centers
 - \rightarrow partially recovered without beam
- Damage/recovery cycles monitored by laser:
 - 2 wavelengths: 440 nm and 796 nm
 - pulsed @ 80Hz (LHC abort gaps) \rightarrow dedicated stream @ HLT level
 - small online farm \rightarrow corrections within 48h \rightarrow applied in prompt-reco

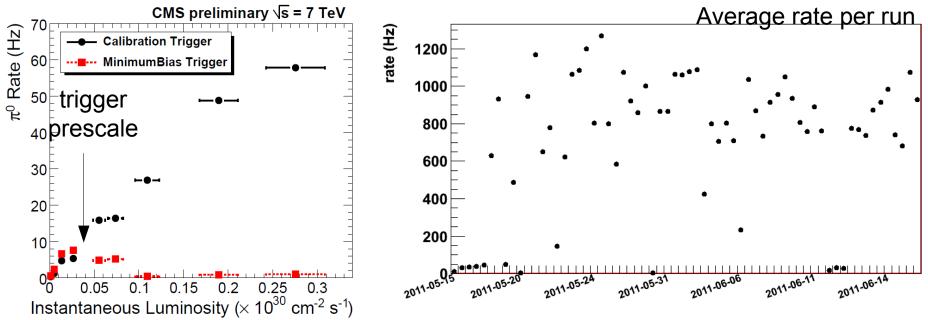


Monitoring of Tracker Structures

- Continuously use express data to monitor Tracker alignment
- Particularly critical for Pixel half-barrels:
 - changes in longitudinal separation mechanically allowed
- Monitoring systems: Primary-Vertex (PV) monitoring:
 - plot d_{xy} and d_z of track Nth wrt the PV computed with remaining N-1 tracks (as a function of φ-sector of probe track)

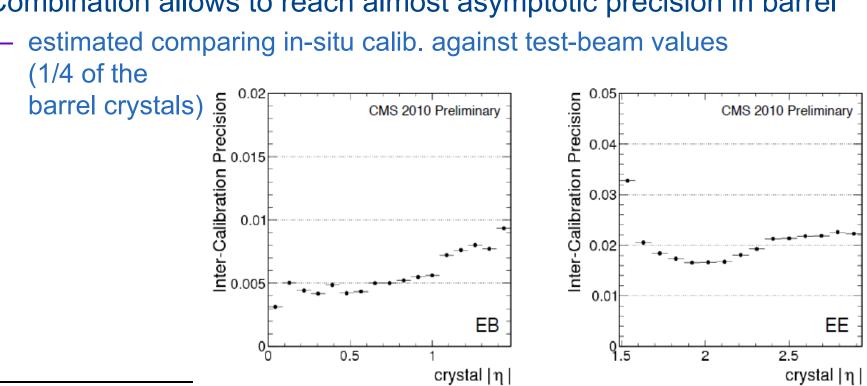
Alignment & Calibration Streams

- All workflows fed by dedicated skims or datasets:
 - event selection tuned on the needs of the workflow
 - event content reduced to optimize bandwidth/disk space usage
- 2 kind of calibration streams:
 - produced directly @ HLT level
 - select (low bias) events (otherwise discarded for physics needs)
 - workflows statistically limited or requiring dedicated selection:


– e.g. ECAL π^0 stream and ϕ -symmetry....

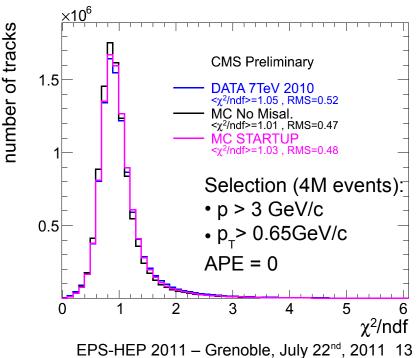
- profit from High Level Trigger flexibility \rightarrow software based
- produced offline during express and prompt reconstruction (and offline re-processing)
 - just skimming events dedicated to calibrations
 - tracker alignment \rightarrow minimum-bias, muons and resonances
 - ECAL calibrations \rightarrow electrons from W and Z
 - HCAL calibrations \rightarrow di-jet events
 - muon chamber time pedestals and alignment

ECAL crystal inter-calibration


- Calibration stream produced @ HLT level: π^0 and η calibration events
 - low CPU usage @ HLT:
 - seeded by Level1 single- e/γ or single-Jet triggers
 - regional unpacking ($\Delta \eta \ x \ \Delta \phi = 0.25 \ x \ 0.4$ around the seed)
 - event selection based on info @ crystal-level only
 - high rate (O(1kHz)) but low bandwidth (~40MB/s)
 - store data only for interesting crystals (ROI)

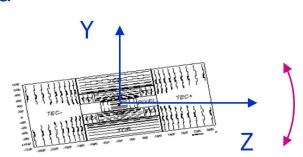
ECAL crystal inter-calibration

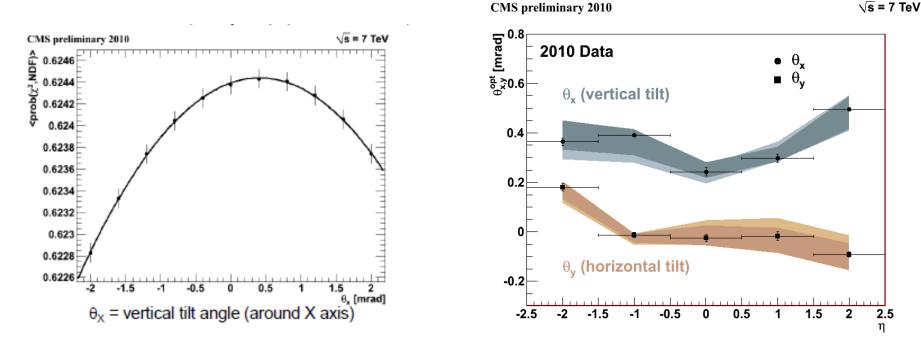
- Inter-calibration based on several (complementary) techniques:
 - pre-calibrations @ test-beam + cosmics
 - ϕ -symmetry $\rightarrow \phi$ invariance of energy flow @ fixed pseudo-rapidity
 - dedicated stream (@ HLT) of minimum-bias events
 - $-\pi^0$ and η calibration \rightarrow photon pairs $\pi^0(\eta) \rightarrow \gamma \gamma$
- Combination allows to reach almost asymptotic precision in barrel
 - estimated comparing in-situ calib. against test-beam values



Tracker Alignment

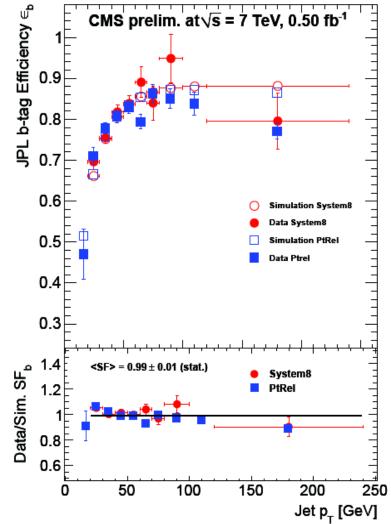
 Largest silicon tracker ever built (~200 m², 16588 modules)


- alignment huge challenge methodically & computationally
- Track-based alignment combining two methods:
 - local method (HIP): alignment parameters from residuals of each alignable \rightarrow iterative method
 - global method (Millepede-II): simultaneous fit of all alignment and track parameters
 y
- Combine cosmics & collision data:
 - dedicated offline streams:
 - Minimum-Bias tracks
 - muons
 - resonances
- Performance are very close to "ideal" (=perfectly aligned) tracker



Tracker vs Magnetic Field

- Studied tilt angles of tracker w.r.t. magnetic field
 - goodness of fit (χ^2 prob.) scans for various tilt angles
 - vertical tilt (θ_x) ~300µrad
 - horizontal tilt (θ_v) ~zero



Performance

- Calibration workflows demonstrated needed robustness and flexibility:
 - can tune latency depending on needs
 - produce physics results very quickly:
 plots like this one →
 out of prompt-reconstruction

(few hours after the data acquisition)

- Quality of prompt-reco → minimize need for offline re-reco
- Calibration & Alignment scenario in MC simulation:
 - decent data/MC agreement also on convoluted variables

Outlook

- The Alignment & Calibration infrastructure proved to be efficient
 and effective
 - fast analysis turnaround
 - prompt calibration → publication level data out of prompt-reco (48h after data-taking)
- The calibration challenge is still ongoing:
 - many conditions require continuous monitoring → automation is a key asset
 - still room for improvement for many aspects → not yet asymptotic in terms of performance
- Calibration & alignment tightly coupled to workflows for:
 - data-certification and validation
 - offline reconstruction