Higgs Bosons in the Next-to-Minimal

Supersymmetric Standard Model (NMSSM)

U. Ellwanger, LPT Orsay

Recall: the only explicit mass term in the Lagrangian of the SM appears in the Higgs potential:

$$V_H = -m^2|H|^2 + \frac{\lambda}{4}|H|^4$$

$$\longrightarrow \langle H \rangle = \sqrt{2} \frac{m}{\lambda} \simeq 174 \text{ GeV}, \qquad M_H = \lambda \cdot \langle H \rangle = ??$$

In the NMSSM:

- all supersymmetric interactions are scale invariant
- all mass terms originate from supersymmetry breaking $\sim M_{\rm SUSY}$
- the phenomenologically required supersymmetric higgsino mass term $\mu \Psi_{H_u} \Psi_{H_d}$ of the MSSM is replaced by a Yukawa coupling $\lambda S \Psi_{H_u} \Psi_{H_d}$
- S: gauge singlet superfield, $\langle S \rangle \sim M_{\text{SUSY}}$

$$\rightarrow \mu_{\text{eff}} = \lambda \langle S \rangle \sim M_{\text{SUSY}} \checkmark$$

- → more states (w.r.t. the MSSM) in the Higgs and neutralino sectors:
- 3 neutral CP-even Higgs bosons (linear comb. of H_u , H_d and S),
- 2 neutral CP-odd Higgs bosons,
- 5 neutralinos.

The relevant part of the Higgs potential in the MSSM/NMSSM in the approximation $\langle H_u \rangle \gg \langle H_d \rangle$:

$$V_H \simeq \left(m_{H_u}^2 + \mu^2\right) |H_u|^2 + \frac{g_1^2 + g_2^2}{8} |H_u|^4$$

where $m_{H_u}^2 \sim -M_{\rm SUSY}^2$, $\mu = {\rm higgsino~mass~term} \equiv \mu_{\rm eff}$ in the NMSSM

$$\rightarrow \langle H_u \rangle^2 \sim -4 \frac{m_{H_u}^2 + \mu^2}{g_1^2 + g_2^2} \stackrel{!}{=} \frac{2M_Z^2}{g_1^2 + g_2^2}$$
 or $-2(m_{H_u}^2 + \mu^2) \stackrel{!}{=} M_Z^2$

 \longrightarrow iff $M_{\rm SUSY}^2 \sim -m_{H_u}^2 \gg M_Z$: need to tune μ such that

$$-2(m_{H_u}^2 + \mu^2) \simeq M_Z^2$$

Physical Higgs mass:
$$M_H^2 \sim M_Z^2 + \frac{3m_{top}^2}{4\pi^2\langle H_u \rangle^2} \ln\left(\frac{M_{\rm stop}^2}{m_{top}^2}\right) + \dots$$

From $M_H \gtrsim 114$ GeV: need $M_{\rm stop} \gtrsim 1$ TeV \to need to tune parameters in order to avoid $m_{H_u}^2 \sim -M_{\rm stop}^2$ from radiative corrections between the weak and the GUT scale

→ "little finetuning problem" of the MSSM

In the NMSSM: The lightest CP-odd Higgs boson A_1 can be light, $0 < M_{A_1} \lesssim 50 \text{ GeV}$

- \longrightarrow H would decay dominantly as $H \to A_1 A_1$
- ightharpoonup LEP constraints on M_H are alleviated; essentially: Constraints from H
 ightharpoonup 4b (if $M_{A_1} \gtrsim 10.5$ GeV) from DELPHI/OPAL Constraints from H
 ightharpoonup 4 au (if $M_{A_1} \lesssim 10.5$ GeV) from ALEPH

The region 9.5 GeV $\lesssim M_{A_1} \lesssim 10.5$ GeV is particularly interesting:

 A_1 would mix with the CP-odd $b\bar{b}$ bound states $\eta_b(nS)$

The mass of the only observed state $\eta_b(1S)$ (BaBar) is below expectations from QCD for the hyperfine splitting $M_{\Upsilon(1S)}-M_{\eta_b(1S)}$

 \rightarrow a hint for $A_1 - \eta_b(1S)$ mixing, if M_{A_1} is in the above range? (F. Domingo, U. E., C. Hugonie, M. Sanchis-Lozano)

However: the width $\eta_b(nS) \to gg$ is much larger than the width $A_1 \to \tau^+\tau^-$

- \rightarrow a tiny $A_1 \eta_b(nS)$ mixing angle suffices such that the physical eigenstate decays dominantly into gg (F. Domingo, U. E.)
- ightharpoonup For 9.5 GeV $\lesssim M_{A_1} \lesssim$ 10.5 GeV, A_1 would decay dominantly as $A_1 \to gg$; ALEPH constraints on $H \to A_1A_1 \to 4\tau$ do not apply

The $BR(A_i \to \tau^+ \tau^-)$ as function of M_{A_1}

The colors indicate which state $\eta_i \equiv \{\eta(nS), A_1\}$ corresponds to A_1 : $red \rightarrow \eta_1$, $green \rightarrow \eta_2$, $brown \rightarrow \eta_3$, $blue \rightarrow \eta_4$.

A small $BR(A_i \to \tau^+ \tau^-)$ implies a large $BR(A_1 \to gg)!$

Impact on the fine tuning, comparing the NMSSM to the MSSM (U. E., G. Espitalier-Noel, C. Hugonie)

Assume universal soft SUSY breaking parameters at the GUT scale \rightarrow cMSSM, cNMSSM

Compute the fine tuning measure $\Delta = Max\{\left|\frac{\partial \ln(M_Z)}{\partial \ln(p_i^{\mathsf{GUT}})}\right|\}$,

where p_i^{GUT} are the parameters at the GUT scale: $p_i^{\text{GUT}} = m_0, \ M_{1/2}, \ A_0, \ h_t, \ \dots$

 Δ should be as small as possible, preferably of $\mathcal{O}(1)$ (Standard Model up to M_{GUT} : $\Delta \sim 10^{14}!!!$)

For fixed m_0 , $M_{1/2}$ (universal scalar and gaugino masses) we look for the minimum of Δ as function of A_0 , $\tan(\beta)$, ...; the minimal value of Δ can be represented in the plane m_0 , $M_{1/2}$ for the cMSSM and the cNMSSM

Δ in the plane $m_0-M_{1/2}$ for the cMSSM and the cNMSSM:

ightharpoonup for $M_{1/2}\lesssim$ 400 GeV and $m_0\lesssim$ 800 GeV, the amount of fine tuning in the cNMSSM (\gtrsim 10) can be considerably less than in the cMSSM (\gtrsim 33) due to lower possible values of M_H due to allowed $H\to A_1A_1$ decays

Curves: lower bounds on $M_{1/2}$, m_0^* from $L^{int} \simeq 35~{
m pb}^{-1}$ at the LHC :

Black: ATLAS, interpreted within the cMSSM with $\tan \beta = 3$, $A_0 = 0$

Red: CMS, interpreted within the cMSSM with $\tan \beta = 10$, $A_0 = 0$

*Not necessarily applicable to the cNMSSM, notably for a singlino-like LSP

Dependence of the Fine Tuning Δ on M_{A_1} in the cNMSSM:

\rightarrow \triangle is particularly low for

- a) $M_{A_1} \sim 10$ GeV (H can be light due to the absence of constraints from $H \to 4\tau$, just from the remaining non-vanishing $BR(H \to b\bar{b})$)
- b) 30 GeV $\lesssim M_{A_1} \lesssim$ 50 GeV (weak constraints on M_H from $H \to 4b$)

For any value of M_H , M_{A_1} , the search for a SM-like Higgs boson decaying as $H \to A_1A_1 \to xx\,xx$ is a challenge at the LHC

Numerous studies on the final states 4b, $2b 2\tau$, 4τ , $2\tau 2\mu$ by

M. Almarashi, A. Belyaev, M. Carena, L. Cavicchia, S. Chang, K. Cheung, R. Dermisek, U. E., P. J. Fox, R. Franceschini, J. Gunion, T. Han, S. Hesselbach, G. Y. Huang, C. Hugonie, S. Lehti, M. Lisanti, S. Moretti, S. Munir, A. Nikitenko, P. Poulose, I. Rottländer, V. S. Rychkov, M. Schumacher, C. H. Shepherd-Themistocleous, J. Song, T. Stelzer, J. G. Wacker, C. M. Wagner, N. Weiner, S. Wiesenfeldt, S. Willenbrock, Q. Yan

→ No "No-lose theorem"!

The interesting case $M_{A_1}\approx 10$ GeV where $A_1\to gg$ would be particularly challenging: hopeless???

New development: use Jet Substructure:

Ch.-R. Chen, M. Nojiri, W. Sreethawong; A. Falkowski, D. Krohn, L.-T. Wang, J. Shelton, A. Thalapillil; B. Bellazzini, C. Csaki, J. Hubisz, J. Shao; D. Kaplan, M. McEvoy; Ch. Englert, T. Roy, M. Spannowsky

Ass. H production with W^{\pm} , require isolated lepton from $W^{\pm} \rightarrow l^{\pm} + \nu$

Consider $H \rightarrow A_1A_1 \rightarrow 2$ (fat) jets j from each A_1

Require $p_{T_j}>$ 100, 50 GeV (or 200 GeV) \longrightarrow boosted Higgs Look for substructure in j with $m_j\lesssim$ 12 GeV: $j(A_1)=\{j_1,\,j_2\}$ (Gluons): Undo the last recombination step of the clustering algorithm from $j_1,\,j_2$ to j, require $m_{j_1}\sim m_{j_2}\ll m_j$

 J_1 J_2 J_3

Then: Look for peak in $m_{jj}\sim m_H$: (Here: $m_H=120$ GeV, L=30 fb $^{-1}$, from Chen, Nojiri, Sreethawong,

arXiv:1006.1151)

Seems feasable!

Conclusions

- In a large part of the parameter space of the NMSSM, no Higgs would be visible in standard search channels due to Higgs-to-Higgs decays
- These regions in the parameter space are well motivated by a lower Higgs mass compatible with LEP constraints
 - → lower fine tuning
- For a no-lose theorem, conclusive results are required for $H\to A_1A_1$, $A_1\to 2b,\ 2\tau,\ 2\mu,\ gg$ (and combinations thereof) for all possible values of M_H , M_{A_1}
- The analysis of Jet Substructure can be of great help, not only for "fat" jets due to $A_1 \to gg$, but also for $A_1 \to 2\tau$, $A_1 \to 2b$!