

CMS Experiment at LHC, CERN Run 135149, Event 125426133 Lumi section: 1345 Sun May 09 2010, 05:24:09 CEST

Muon p_T = 67.3, 50.6 GeV/c Inv. mass = 93.2 GeV/c²

W,Z+JETS PRODUCTION AT CMS

Monika Grothe (U Wisconsin)

Introduction

- W & Z produced in abundance at LHC
 - Important SM candles for detector commissioning
 - Important test of and handle on QCD
 - Major background to many NP searches
- Very clean final state that contain all the typical elements of final states at the LHC: leptons, jets, missing ET (MET)
- □ V+jets complementary to inclusive V production:
 - At LO inclusive W and Z production proceeds via collisions of a valence quark and a sea antiquark
 - In associated jet production, gluons play a major role:

$$u + g \rightarrow W^+ + q; \quad d + g \rightarrow W^- + q$$

When associated to specific jet flavors, additional pdfs are accessible

$$s + g \rightarrow W^- + c; \quad b + g \rightarrow Z + b$$

Ideal for PDF measurements

Contents

- □ This Talk: Present 4 analyses of 2010 CMS data (36pb⁻¹⁾
 - W & Z + jet cross-section and scaling properties
 CMS-PAS-EWK-10-012
 - Measurement of polarization in boosted W decays
 - CMS-EWK-10-014; CERN-PH-EP-2011-043; arXiv:1104.3829
 - Z production in association with b jets
 - CMS-PAS-EWK-10-015
 - W production in association with c jets
 - CMS-PAS-EWK-11-013

Experimental techniques

- Muons in CMS reconstructed with the help of the Si tracker and the muon chambers
- Typical p_T resol. for EWK studies: 1-2%
- Identification based on compatibility of tracking, calorimeter and muon chamber info with muon hypothesis
- Electrons in CMS reconstructed with the help of the Si tracker and the PbWO₄ crystal calorimeter
- Typical E_{T} resol. for EWK studies: 1%
- Identification based on shower shapes, track matching and Had./El. ratio

- Reconstruction of jets and MET uses particle-flow techniques that aim at reconstructing all constituents in the event or jet
- For jets, use infrared-safe anti-k_T algorithm with cone radius of 0.5
- Typical jet energy scale uncertainty for EWK measurements < 3%, typical jet energy resolution 10-15%

Monika Grothe (U Wisconsin): V+jets measurements from CMS

CMS-PAS-EWK-10-012

- Key background in many new physics searches
- Diagram is ordinary EWK+QCD
 - Extra jets make NLO predictions very challenging
 - Current state of the art:
 - W(Z)+4(3) Jets calculations available
 - Phys.Rev.Lett.106:092001,2011 Phys.Rev.D82:074002,2010
- □ Standard strategy :
 - a) LO matrix element calculations for each jet multiplicity,
 - **b**) interfaced with parton shower MCs using specific matching recipes
 - Implemented in ME+PS Monte Carlo generators like ALPGEN, MadGraph, SHERPA
- Madgraph used as main reference in this analysis
- Results are presented in terms of ratios, in order to cancel systematic effects (energy scale, luminosity, selection)
- W and Z selection kept as similar as possible
- Use data-driven techniques (tag-and-probe, shapes used in fits) as much as possible
- To ease comparison with theoretical predictions, all results are quoted within acceptance

Event Selection

CMS-PAS-EWK-10-012

Jet Distributions: Example $W \rightarrow \mu v$

CMS-PAS-EWK-10-012

- \Box Anti-K_T Particle-flow jets with cone radius 0.5
- \Box E_T > 30 GeV; | η | < 2.4; Pile-up subtracted (Phys.Lett.**B659**:119-126,2008)
- **Muons:** Removed before jet clustering; Electrons: Use $\triangle R$ veto of 0.3
- □ Madgraph MC scaled to NNLO X-section, others to NLO

Monika Grothe (U Wisconsin): V+jets measurements from CMS

Signal Extraction

Done for each jet multiplicity:

- Z+jet: fit to the di-lepton invariant mass distribution
- W+jet: fit to the MT distribution and to the number of b-tagged jets (to extract the top contribution in a data-driven way)

Results for $E_T^{jet} > 30 GeV$: W

- □ Use single value decomposition unfolding to correct migrations due to jet resolution
- □ Efficiencies of trigger, reconstruction and selection determined with tag-and-probe method on $Z \rightarrow II$ events and corrected for
- Leading systematics: Jet energy scale uncertainty and unfolding at high multiplicities

Results for $E_T^{jet} > 30 \text{GeV}$: Z

CMS-PAS-EWK-10-012

For W+jets and Z+jets:

10

- → Results agree well with the expectations from ME+PS MC MADGRAPH
- PYTHIA does not agree with the data (only expected to describe up to 1 hard jet + soft/collinear radiation (LO+ME reweighting))

Berends-Giele Scaling in V+Jets

- Test scaling behaviour: $C_n = \frac{\sigma(V+n \text{ jets})}{\sigma(V+(n+1)\text{ jets})}$
- Naïve LO expectation:

 $C_n = const = \alpha$ Constant proportional to α_s^{-1}

Allow deviation from naïve scaling in fit:

 $C_n = \alpha + \beta n$

→ Results in reasonable agreement with MADGRAPH expectations

$\mathcal{N}^{\mathcal{N}}W^+$ U **Boosted W Polarization** 8 2000 12 For production of high p_T W bosons at the LHC: Dominated at LO by production from valence guark and gluon xf(x,Q²) because of pdfs $Q^2 = 10^4 \text{ GeV}^2$ Hence SM expectation: a/10 Charge: $N(+)>N(-) \rightarrow$ net charge asymmetry 0.8 ■ Helicity: $N(q_1) > N(q_2)$ → net polarization asymmetry 0.6 Helicity argument same for ug and dg initial state 0.4 In NP scenarios W polarization may differ significantly from SM prediction 0.2 10⁻² 10⁻¹ x v_L \mathcal{U}_I g_L g_R Illustrations in W restframe \mathcal{U}_I d_L W Spin l_R^+ ${\cal V}_R$ d_L W flight direction b) u, gluon right-handed: a) u, gluon left-handed: W spin opposite to u quark W spin in d quark direction $u_L g$: incoming particles W_{R} preferred: 100% at infinite $P_{T}(W)$ W₁ 100% $v_R d_I l_R^+$: outgoing particles

(amplitude a)²/(amplitude b)² = 4/1 at infinite $P_T(W)$

Boosted W Polarization: Exp. technique

CMS-EWK-10-014

□ Selection:

- \square M_T > 50 (30) GeV for electron (muon) channel to reject QCD background
- No more than 3 jets with $E_T > 30$ GeV to reject top background
- P_T(W)>50GeV to enhance qg component that leads to polarized Ws
- Since $P_z(W)$ undetermined, cannot fully determine the angular distribution as function of $\cos \theta^*$ of the lepton in the helicity center-of-mass frame of the W
- Instead, use lepton projection in the transverse plane in the lab frame

Boosted W Polarization: Results

Observation of Z+b with $Z\rightarrow II$

CMS-PAS-EWK-10-015

- \Box Z+b benchmark for high tan β MSSM Higgs searches
- □ H+b NLO prediction has large uncertainties
 - 30% scheme dependence (variable vs fixed flavor schemes)
 - Z+b data should help to clarify
- □ Select Z+≥1 jet events

- □ Jet ET > 25 GeV; separated from lepton by ΔR >0.5
- Require secondary vertex
- $M_T < 40 \text{ GeV}$ to reject top
- 29 dieletron and 36 dimuon events after sele
- B-tagging descriminant variable built from flight distance between PV and SV
 - SSVHE: high efficiency selection with ≥2 tracks attached to SV
 - SSVHP: high purity selection with ≥3 tracks attached to SV

Z+b/Z+jets Ratio

CMS-PAS-EWK-10-015

Determine Z+b purity in selected sample from binned ML fit:

16

- of SV mass or B-tag discriminant shape
- MC templates for b, c, ligh-jet components

Purity (%)	SSVHE	SSVHP
data	55±9	88±11
MC	57±3	82±4

- Results compatible with Madgraph (scaled to NLO) & MCFM
- Limited statistics: scheme dependence cannot be resolved yet

Sample	$rac{pp ightarrow ee+b+X}{pp ightarrow ee+j+X}$ (%) $\mathrm{p}_T^e>25\mathrm{GeV}$, $ \eta^e <2.5$	$rac{pp ightarrow\mu\mu+b+X}{pp ightarrow\mu\mu+j+X}$ (%) $\mathrm{p}_T^\mu>20$ GeV, $ \eta^\mu <2.1$
Data SSVHE	$4.3 \pm 0.6(stat) \pm 1.1(syst)$	$5.1 \pm 0.6(stat) \pm 1.3(syst)$
Data SSVHP	$5.4 \pm 1.0(stat) \pm 1.2(syst)$	$4.6 \pm 0.8(stat) \pm 1.1(syst)$
MadGraph	$5.1 \pm 0.2(stat) \pm 0.2(syst) \pm 0.6(theory)$	$5.3 \pm 0.1(stat) \pm 0.2(syst) \pm 0.6(theory)$
MCFM	4.3 ± 0.5 (theory)	$4.7 \pm 0.5 (theory)$

Study of W+c with W $\rightarrow \mu$ U

CMS-PAS-EWK-11-013

- Process dominated by sbar g \rightarrow W⁺ cbar and sg \rightarrow W⁻ c
- Probes s and sbar content of proton
- □ Select W+≥1 jet events in muon channel
 - $M_T > 50 \text{ GeV}$ to reject QCD background
 - □ Jet E_T > 20 GeV
 - **Require SV with \geq 2 associated tracks and significantly displaced from PV**
- B-tagging descriminant variable D_{SSVHE} built from flight distance between PV and SV

ML fit of signal, top, W+light quarks, DY components to observed D_{SSVHE}

Negative values of D_{SSVHE} due to detector resolution effects and well suited to constrain light quark component

$(W^++c)/(W^-+c)$ and (W+c)/(W+jets) ratios

CMS-PAS-EWK-11-013

□ For leading jet with $E_T > 20 GeV$ and $| \eta | < 2.1$:

$$\begin{aligned} R_c^{\pm} &\equiv \sigma(W^+ \bar{c}) / \sigma(W^- c) \\ R_c^{\pm} &= 0.92 \pm 0.19 \; (stat.) \pm 0.04 \; (syst.) \end{aligned}$$

Leading source of sys error: PDF uncertainties, pile-up effect and background templates

$$R_c \equiv \sigma(W+c) / \sigma(W+jets)$$

$$R_c = 0.143 \pm 0.015 (stat.) \pm 0.024 (syst.)$$

Leading source of sys error: Tracking resolution

Results in agreement with NLO predictions

Summary and Outlook

- Presented 4 CMS analysis with 2010 data set; 36pb⁻¹ integrated luminosity
- Presented V+Jets results from CMS
 - **I** Jet p_T distributions and rates in good agreement with ME+PS MC simulation
 - First direct measurement of Berends-Giele scaling
 - $\hfill\square$ Under preparation: Ratio of cross sections separately for W^+ , W^-
- Clear observation of boosted W polarization
- Observation of Z+b and W+c events
- All results so far show good agreement with MC+PS Monte Carlo generators and NLO calculations
- Outlook for results from 2011 data:
 - So far in 2011 CMS recorded 1.25 fb⁻¹ 2011
 - Characterize V+jets in more detail with differential distributions: $d\sigma/dET$ for each jet, $d\sigma/dRjj$, $d\sigma/dMjj$, $d\sigma/d\Delta yjj$ etc
 - Use V+jets to constrain PDFs at the LHC

CMS-PAS-EWK-10-012

Table 3: Relative systematic and statistical uncertainties on the measured jet multiplicity in W events.

Uncertainties on jet rate in $W \rightarrow ev$ events [%]								
Jet multiplicity	0	1	2	3	\geq 4			
Jet counting	∓ 5	±8	+11 -10	+14 -12	+16 -15			
Lepton efficiency	±3	+6 -5	+7 -6	±10	+24 -12			
Signal extraction		±0.1	± 0.4	±2.9	± 8.5			
Total systematics	±6	±10	+13 -12	+18 -16	+30 -21			
Statistical uncertainty	±0.3	±1.0	±2.4	±7.5	±22			
Uncertainties on	jet rate	in W →	γν eve	ents [%]				
Jet multiplicity	0	1	2	3	\geq 4			
Jet counting	∓5	±8	+11 -10	+14 -12	+16 -15			
Lepton efficiency	±3	±6	± 4	±10	±17			
Signal extraction		±0.1	± 0.4	±2.9	±8.5			
Total systematics	±6	±10	+13 -12	+19 -17	±26			
Statistical upcontainty	± 0.2	± 0.8	+2.3	+65	+27			

CMS-PAS-EWK-10-012

Table 4: Relative systematic and statistical uncertainties on the measured jet multiplicity in Z events.

Uncertainties on jet rate in $Z \rightarrow e^+e^-$ events [%]									
Jet multiplicity	0	1	2	3	\geq 4				
Jet counting	7 5	±8	+11 -10	+14 -12	+16 -15				
Efficiency	±3	+6 -5	+7 -6	±10	+24 -12				
Total systematics	±6	±10	+13 -12	+18 -16	+30 -21				
Statistical uncertainty	±1.0	±3.0	±8.0	±20	± 47				
Uncertainties on jet rate in $Z \rightarrow \mu^+\mu^-$ events [%]									
Uncertainties on je	t rate in	$Z \rightarrow \mu$	+μ- ev	ents [%	6]				
Uncertainties on je Jet multiplicity	t rate in 0	$Z \rightarrow \mu$ 1	+μ- ev 2	ents [% 3	₀] ≥4				
Uncertainties on je Jet multiplicity Jet counting	t rate in 0 ∓5	$Z \rightarrow \mu$ 1 ±8	$^{+}\mu^{-} ev$ 2 $^{+11}_{-10}$	ents [% 3 +14 -12	≥ 4 +16 -15				
Uncertainties on je Jet multiplicity Jet counting Efficiency	t rate in 0 ∓5 ±3	$Z \rightarrow \mu$ 1 ± 8 $^{+6}_{-5}$	$^+\mu^- \text{ ev}$ 2 $^{+11}_{-10}$ $^{+7}_{-6}$	ents [% 3 $^{+14}_{-12}$ ± 10	≥ 4 +16 -15 +24 -12				
Uncertainties on je Jet multiplicity Jet counting Efficiency Total systematics	t rate in 0 ∓ 5 ± 3 ± 6	$ \begin{array}{c} Z \rightarrow \mu \\ 1 \\ \pm 8 \\ +6 \\ -5 \\ \pm 10 \end{array} $	$^+\mu^- \text{ ev}$ 2 +11 -10 +7 -6 +13 -12	ents [% +14 -12 ± 10 +18 -16					

CMS-PAS-EWK-10-012

Table 5: $\sigma(W + \ge n \text{ jets}) / \sigma(W)$, the jet multiplicities normalized to the inclusive cross section.

num jets	σ ratio	stat	stat + fit and	JES	unfolding
			efficiency		
		electro	n channel		
$\geq 1 / \geq 0$ jets	0.126	0.001	0.004	+0.018 -0.016	+0.000 -0.002
\geq 2 / \geq 0 jets	0.026	0.000	0.002	+0.004 -0.004	+0.001 -0.000
\geq 3 / \geq 0 jets	0.0043	0.0002	0.0005	+0.0008 -0.0007	+0.0003 -0.0000
≥ 4 / ≥ 0 jets	0.0007	0.0000	0.0002	+0.0002 -0.0001	+0.0000 -0.0000
		muon	channel		
$\geq 1 / \geq 0$ jets	0.137	0.001	0.007	+0.019 -0.017	+0.000 -0.002
\geq 2 / \geq 0 jets	0.026	0.000	0.001	+0.004 -0.004	+0.001 -0.000
\geq 3 / \geq 0 jets	0.0044	0.0001	0.0005	+0.0008 -0.0007	+0.0004 -0.0001
≥ 4 / ≥ 0 jets	0.0007	0.0000	0.0002	+0.0001 -0.0001	+0.0000 -0.0001

Table 6: $\sigma(Z + \ge n \text{ jets}) / \sigma(Z)$, the jet multiplicities normalized to the inclusive cross section.

num jets	σ ratio	stat	stat + fit and	JES	unfolding
			efficiency		
		electron	n channel		
\geq 1 / \geq 0 jets	0.148	0.003	0.007	+0.020 -0.019	+0.000 -0.002
≥ 2 / ≥ 0 jets	0.028	0.001	0.003	+0.004 -0.004	+0.001 -0.000
\geq 3 / \geq 0 jets	0.0035	0.0005	0.0010	+0.0007 -0.0005	+0.0001 -0.0000
\geq 4 / \geq 0 jets	0.0008	0.0000	0.0005	+0.0002 -0.0001	+0.0002 -0.0001
		muon	channel		
\geq 1 / \geq 0 jets	0.136	0.003	0.009	+0.022 -0.020	+0.003 -0.018
≥ 2 / ≥ 0 jets	0.026	0.001	0.003	+0.004 -0.004	+0.002 -0.005
\geq 3 / \geq 0 jets	0.0040	0.0005	0.0011	+0.0007 -0.0006	+0.0002 -0.0012
≥ 4 / ≥ 0 jets	0.0009	0.0000	0.0005	+0.0002 -0.0001	+0.0001 -0.0002

CMS-PAS-EWK-10-012

Table 7: $\sigma(W + \ge n \text{ jets}) / \sigma(W + \ge (n-1) \text{ jets})$, the ratio of jet multiplicities.

num jets	σ ratio	stat	stat + fit and	JES	unfolding
			efficiency		
		electro	n channel		
$\geq 1 / \geq 0$ jets	0.126	0.002	0.004	+0.018 -0.016	+0.002 -0.000
\geq 2 / \geq 1 jets	0.208	0.009	0.012	+0.003 -0.002	+0.000 -0.013
\geq 3 / \geq 2 jets	0.165	0.015	0.018	+0.004 -0.004	+0.002 -0.002
\geq 4 / \geq 3 jets	0.167	0.035	0.039	+0.002 -0.003	+0.014 -0.000
		muon	channel		
$\geq 1 / \geq 0$ jets	0.137	0.001	0.007	+0.019 -0.017	+0.002 -0.000
\geq 2 / \geq 1 jets	0.190	0.005	0.013	+0.004 -0.003	+0.000 -0.011
\geq 3 / \geq 2 jets	0.170	0.011	0.018	+0.004 -0.003	+0.006 -0.008
\geq 4 / \geq 3 jets	0.151	0.025	0.037	+0.003 -0.002	+0.023 -0.000

Table 8: $\sigma(Z + \ge n \text{ jets}) / \sigma(Z + \ge (n-1) \text{ jets})$, the ratio of jet multiplicities.

num jets	σ ratio	stat	stat + fit and	JES	unfolding
			efficiency		
		electro	on channel		
$\geq 1 / \geq 0$ jets	0.148	0.006	0.007	+0.020 -0.019	+0.002 -0.000
$\geq 2 / \geq 1$ jets	0.190	0.020	0.020	+0.002	+0.000 -0.010
\geq 3 / \geq 2 jets	0.125	0.034	0.034	+0.004	+0.003 -0.000
\geq 4 / \geq 3 jets	0.214	0.117	0.117	+0.003 -0.004	+0.022 -0.042
		muor	n channel		
$\geq 1 / \geq 0$ jets	0.136	0.005	0.009	+0.022 -0.020	+0.018 -0.003
$\geq 2 / \geq 1$ jets	0.189	0.017	0.025	+0.001	+0.009
$\geq 3 / \geq 2$ jets	0.157	0.038	0.041	+0.002	+0.023
$\geq 4 / \geq 3$ jets	0.218	0.109	0.110	+0.002 -0.004	+0.020 -0.043

CMS-PAS-EWK-10-012

Table 9: Results for the Berends-Giele parameters in the electron channel compared with expectations from MadGraph Z2 at particle level.

		data	stat	JES	$\epsilon(\ell)$	Theory
Ζ	α	5.0	±1.0	+0.1 -0.0	+0.00 -0.06	5.04 ± 0.10
	β	0.7	±0.8	+0.08 -0.04	+0.3 -0.6	0.45 ± 0.08
W	α	4.6	± 0.4	+0.2 -0.0	-0.05 +0.02	5.18 ± 0.09
	β	0.5	± 0.4	+0.0 -0.3	±0.2	0.36 ± 0.07

Table 10: Results for the Berends-Giele parameters in the muon channel compared with expectations from MadGraph Z2 at particle level.

		data	stat	JES MC	$\epsilon(\ell)$	D6T tune	Theory
Ζ	α	5.8	± 1.2	±0.6	±0.1	+0.3	4.8 ± 0.1
	β	-0.2	± 1.0	±0.3	±0.1	-0.0	0.35 ± 0.09
W	α	4.3	±0.3	±0.2	±0.2	-0.4	5.16 ± 0.09
	β	0.7	±0.3	±0.2	±0.3	+0.3	0.22 ± 0.06

Monika Grothe (U Wisconsin): V+jets measurements from CMS