The extinction law of Type la Supernovae

The Nearby Supernovae Factory

CHOTARD Nicolas HEP 2011 22 / 07

vendredi 22 juillet 2011

Outlook

Introduction

- *Observational cosmology with SNe Ia 📱
- *The Nearby Supernova Factory

SNe la variability

- *SNe la and extinction law
- *Spectral analysis
- *Empirical extinction law construction

Chotard, et al., A&A. (2011)

Observational cosmology with SNe la

- * **Hubble diagram :** distance modulus vs. redshift $\mu_B = m_B M_B = 5log(\textbf{d}_L) 5$
- * High-z SNe: cosmological parameters (in dL)
 * Nearby SNe: constrain the degeneracy between cosmology and SNe Ia luminosity
 - * **High quality data** of low redshift SNe la needed to reduce systematics
- * **Optimal redshift** centered around 0.05 : **Hubble flow** (Linder 06)

The Nearby Supernovae Factory

Main Goals

- * Increase the nearby SNe Ia sample (0.03 < z < 0.08)
- * Large sample of flux calibrated spectral time series: control of systematic and standardization
- * SNe la physics:
 - * constrain the models with high quality spectra at multiple phases,
 - * **spectral properties, extinction study**, host analysis,...

Data sample

- * ~200 SNe with more than 5 spectra
- * ~3000 spectra from -15 to +40 days / max
- * redshift coverage from 0.01 to 0.1, median is 0.06
- * median phase of 1st spec: -2
- * mean cadence of observation: ~3 days
- * spectral coverage 3000 9000 Å

SNe la : quasi-standard candles

Homogeneity

- * similar progenitor (white dwarf)
- * similar mass similar luminosity (Chandrasekhar mass)
- * but dispersion ~0.4 mag without any correction

Variability

* <u>intrinsic</u>:

- * progenitor composition (metallicity),
- * progenitor explosion (⁵⁶Ni mass, viewing angle)
- * <u>extrinsic</u>: mainly driven by the host ISM extinction
- * evolution effects: galaxy properties

Empirical corrections to reduce the dispersion:

* light curve width : ∆m I 5, stretch, x I BRIGHTER - SLOWER
* color: B-V at max, salt2 color BRIGHTER - BLUER

In the SALT2 formalism: $\mu_B = m_B - M_B + \alpha x_1 - \beta c$ Guy, et al., A&A. (2007)

dispersion reduced to 0.15 mag

Dust extinction

* **Dust** in the ISM responsable for an **extinction**, **function of the wavelength**

* A 2 parameters law:

- * dust properties: **R**_v
- * amount of dust: **E(B-V)**

* Cardelli extinction law:

Cardelli, Clayton, Mathis, ApJ. (1989)

 a_{λ} et b_{λ} , given parameters

3.0

$$A_{\lambda} = E(B - V) \times (R_V \times a_{\lambda} + b_{\lambda})$$

High R_v

Which extinction law for SNe la?

- * SNe la dispersion dominated by extinction variability
- * **Recurrent issue** in SNe la analysis: measurement of the **extinction law or 'Rv'**
- * Nearby SNe independant from cosmology: direct estimate of the absorption

Difficulty: SNe la variability is a **mix of intrinsic + extrinsic** components **Our Solution** : Measure the **intrinsic variability** with **spectral indicators**

Spectral analysis at max

Spectral analysis at max

Spectral analysis at max

Equivalent widths:

$$EW = \sum_{i=1}^{N} \left(1 - \frac{f_{\lambda}(\lambda_i)}{f_c(\lambda_i)} \right) \Delta \lambda_i$$

* Insensitive to dust extinction (less than 2%)

Ca and Si:

- * Correlated to absolute magnitude (and stretch)
- * Measurement of the **intrinsic** part of the **variability**

Sample: 76 SNe la which have

- * a good phase sampling
- * a spectrum at max (+/- 2.5 days around max)

Measurements (on each spec at max):

- * EWs (Si and Ca)
- * absolute magnitudes (Hubble residuals)

2 set of filters:

9

- * 5 broad synthetic filters (UBVRI-like)
- * 200 narrow synthetic filter («spectral»)

Separating the variabilities

GOAL : Construct a mean extinction law for SNe la

Ist step : Decompose the Hubble residuals into intrinsic variabilities and relative absorptions δA_{λ} (up to a constant term)

Three cases :

(a) SNe la are **perfect candles** : purely extrinsic variability

- (b) Intrinsic variability described by a *«stretch-like» parameter* : EW^{Si}
- (c) Intrinsic variability described by **two parameters**: EW^{Si} and EW^{Ca}

Hubble
residuals
$$\delta M_{\lambda} = \begin{cases} \delta A_{\lambda}^{0} & (a) & \text{No correction} \\ s_{\lambda}^{\text{Si}} \text{EW}^{\text{Si}} + \delta A_{\lambda}^{\text{Si}} & (b) & \text{One intrinsic correction} \\ s_{\lambda}^{\text{Si}} \text{EW}^{\text{Si}} + s_{\lambda}^{\text{Ca}} \text{EW}^{\text{Ca}} + \frac{\delta A_{\lambda}^{\text{Si}+\text{Ca}}}{10} & (c) & \text{Two intrinsic corrections} \end{cases}$$

Construct the extinction law

GOAL : Construct a mean extinction law for SNe la

Ist step : Decompose the Hubble residuals into intrinsic variabilities and relative absorptions δA_{λ} (up to a constant term) 2nd step : Use the relation between the δA_{λ} to construct the law

Covariance matrix

Why?:

Using the measured covariance matrix only: X²>>I

Extra dispersion matrix needed to set the X^2 to 1 (as in all cosmological fits with SNe Ia)

How? : Using the residual $r_{\lambda}(i)$ to the γ_{λ} fit to construct the additionnal covariance matrix

for each of the 3 cases (a,b,c)

Introduction of a **color dispersion**, not usually used

* Anti-correlation mostly increases with the wavelength differences

* Same pattern for broad filters and narrow band (spectral) correlations

vendredi 22 juillet 2011

Covariance matrix

Why?:

Using the measured covariance matrix only: X²>>1

Extra dispersion matrix needed to set the X^2 to 1 (as in all cosmological fits with SNe Ia)

How? : Using the residual $r_{\lambda}(i)$ to the γ_{λ} fit to construct the additionnal covariance matrix

for each of the 3 cases (a,b,c)

Introduction of a **color dispersion**, not usually used

* Anti-correlation mostly increases with the wavelength differences

* Same pattern for broad filters and narrow band (spectral) correlations

Reminder: $\delta A_{\lambda}(i) = \gamma_{\lambda} \ \delta A_{V}^{*}(i) + \eta_{\lambda} \ (+r_{\lambda})$

Conclusion / What's next

Result: See details in Chotard, et al., A&A. (2011)

* Two variables correlated to the intrinsic variability

- * Extinction law compatible with a Cardelli law
- * Dispersion in color
- * **Rv value** compatible with the **Milky Way one**
- * Better understanding of the SNe Ia intrinsic dispersion and extinction is important to reduce systematic effects in cosmological analysis

Open questions:

- * Dispersion: intrinsic or extrinsic residuals variabilities?
- * Is the result the same at an other phase?
- * Correlation of the matrix to other quantities (spectral variables, host quantities...)?
- * ... A lot of further spectral analysis are in progress with the SNFactory spectral sample

