
High- Q^2 Charged and Neutral Current Cross Sections With Polarised Positron Beam At ZEUS

Trevor Stewart University of Toronto

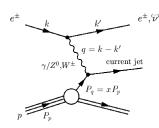
On Behalf of the ZEUS Collaboration

EPS 2011, 21-27 July, Grenoble, France

- Charged current e⁺p.
- Neutral current e⁺p.
 - High-x

HERA II with Longitudinal Polarised e^{\pm} Beams

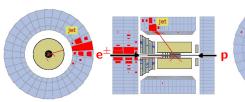
- $e^{\pm}p$ collider with centre-of-mass energy: 318 GeV
- Two general purpose experiments, H1 and ZEUS (ZEUS data to be shown).
- $\approx 0.5 fb^{-1}$ taken by each experiment.


■ HERA II upgrade: Longitudinally polarised e^{\pm} beams. Mean longitudinal polarisation, $P_e = (N_R - N_L)/(N_R + N_L) \approx 30 - 40\%$

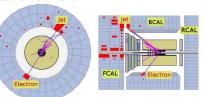
HERA

DIS ○ O

Deep Inelastic Scattering


- Neutral Current (NC), γ or Z_0 exchange. $e^{\pm}p \rightarrow e^{\pm}X$
- Charged Current (CC), W^{\pm} exchange. $e^{\pm} p \rightarrow \nu X$

Variables which characterize DIS:


- Q² probing power, negative 4-momentum squared: $Q^2 = -q^2 = -(k - k')$
- Bjorken x, momentum fraction of proton carried by struck quark:
 - $x = Q^2/2p \cdot q$
- Inelasticity v: $y = p \cdot q/p \cdot k$
- s is the centre-of-mass energy squared: $s = (p + k)^2$
- These are related by: $Q^2 = sxy$

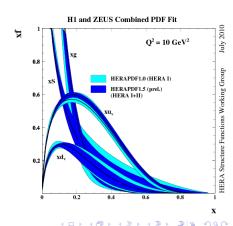
Charged and Neutral Current events in the ZEUS detector

Charged Current

Neutral Current

- $\nu(\bar{\nu})$ escapes the detector volume.
- Jet energy deposits not balanced by e^{\pm} deposits.
- Characterised by missing- P_t .
- Kinematics reconstructed from hadrons.

- Well measured scattered e^{\pm} .
- e^{\pm} energy deposits and Jet(s) balanced in ϕ .
- Kinematics may be reconstructed in multiple ways.



Motivation: PDFs

Motivation

Why are High Precision High- Q^2 CC and NC measurements important?

- The CC cross sections give a powerful probe of the flavour specific parton distributions (PDFs).
- The NC cross sections are sensitive to all flavours.

Motivation: Electroweak

Motivation

Why are High Precision High- Q^2 CC and NC measurements important?

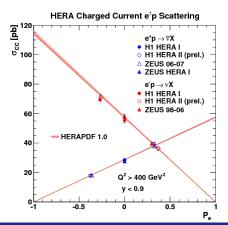
- Provides an excellent environment to test electroweak (EW) theory.
- The difference between the e^+p and e^-p NC cross sections give direct access to the structure function xF_3 .
- The longitudinal polarisation asymmetry, $A^+ \approx a_e v_q$ allows parity violation to be directly measured.

Charged Current Cross Section

In the SM the W^{\pm} interact only with left(right) (anti-)particles.

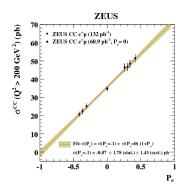
$$\sigma_{CC}^{e^{\pm}p} = (1 \pm P_e)\sigma_{CC,P_e=0}^{e^{\pm}p}$$

$$\frac{d^2\sigma_{CC}^{e^{\pm}p}}{dxdQ^2} = (1 \pm P_e)\frac{G_F^2}{4\pi x}(\frac{M_W^2}{M_W^2 + Q^2})^2\tilde{\sigma}_{CC}^{e^{\pm}p}$$


where $\tilde{\sigma}_{cc}^{e^{\pm}p}$ is the reduced cross section. e^+ and e^- sensitive to different quark densities, given at LO by:

$$\tilde{\sigma}_{CC}^{e^+p} = x[(\bar{u} + \bar{c}) + (1 - y)^2(d + s)]$$

$$\tilde{\sigma}_{CC}^{e^-p} = x[(u + c) + (1 - y)^2(\bar{d} + \bar{s})]$$

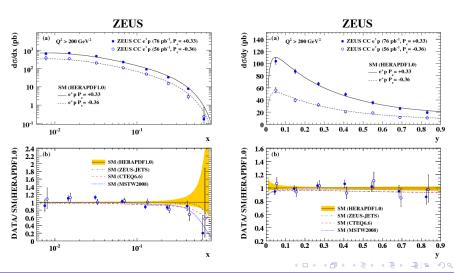

Total cross section with positive and negative P_e

Results published in 2010. Eur. Phys. J. C (2010) 70: 945963.

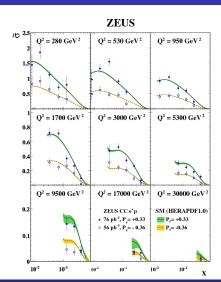
- The total cross section as a function of the longitudinal polarisation of the lepton beam.
 - Previous e⁺p and e⁻p results from H1 and ZEUS also shown.
 - Excellent test of EW theory.
- Results not included in SM predictions (HERAPDF1.0).
 - SM describes data well.

Total cross section at multiple polarisation values

- CC e^+p Cross section becomes 0 for $P_e = -1$ positron beam.
 - A non-zero cross section might point to the existence of a right-handed W boson, W_R.
- Extrapolation to P_e =-1 consistent with 0.
- Limit placed on $\sigma^{CC}(P_e=-1)$ and M_{W_R} GeV consistent with other experiments.
 - $M_{W_R} > 198 \text{GeV}$ at 95% CL

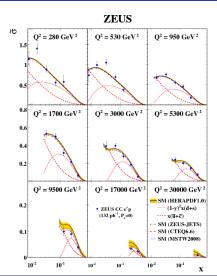


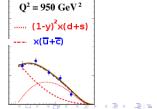
$d\sigma/dQ^2$ with positive and negative P_e

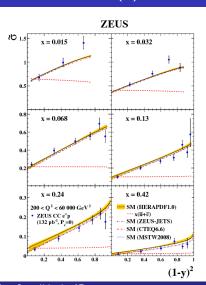


- Overall shift in cross sections due to effect of polarisation.
- Test of EW theory
- SM expectation in good agreement with data.

$d\sigma/dx$ and $d\sigma/dy$ with positive and negative P_e


$\tilde{\sigma}$ with positive and negative P_e


- Effect of polarisation clearly seen.
- SM predictions in good agreement with data.
 - Polarised data well understood. Results can be used to extract PDFs.


$\frac{\tilde{\sigma} \text{ with } P_e = 0 \text{ (1)}$

- The e⁺p CC reduced cross section constrains the d quark density.
- As seen earlier, the reduced cross section, $\tilde{\sigma}$, at LO can be written as a sum of $x(\bar{u} + \bar{c})$ and (d + s) contributions.

Trevor StewartUniversity of Toronto

- SM W boson couples only to left(right)-handed (anti-)fermions.
 - \bullet $e^+\bar{q}$ distribution will be flat.
 - e^+q will exhibit a $(1-y)^2 \propto (1+\cos\theta^*)^2$ distribution.
- $\tilde{\sigma}_{CC}^{e^+p} = x[(\bar{u}+\bar{c})+(1-y)^2(d+s)]$
 - At LO the intercept gives the $(\bar{u} + \bar{c})$ contribution.
 - (d+s) is given by the slope.

Neutral Current Cross Section

■ Mediated by both γ and Z_0

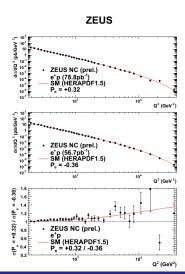
$$\begin{split} &\frac{d^2 \sigma_{NC}^{e^+ p}}{dx dQ^2} = \frac{2\pi \alpha^2}{xQ^4} [Y_+ \tilde{F}_2 \mp Y_- x \tilde{F}_3 - y^2 \tilde{F}_L] \\ &\tilde{\sigma}_{NC}^{e^+ p} = \frac{xQ^4}{2\pi \alpha^2} \frac{1}{Y_+} \frac{d^2 \sigma_{NC}^{e^+ p}}{dx dQ^2} = \tilde{F}_2 \mp \frac{Y_-}{Y_+} x \tilde{F}_3 - \frac{y^2}{Y_+} \tilde{F}_L \end{split}$$

- Where $\tilde{F}_2, x\tilde{F}_3$ and \tilde{F}_L are the generalised structure functions.
- Y_{\pm} is given by:

$$Y_{\pm}=1\pm(1-y)^2$$

Generalised Structure Functions

■ The generalized structure functions are given by:

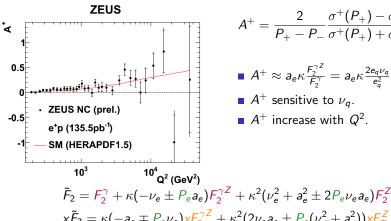

$$\begin{split} \tilde{F}_2 &= F_2^{\gamma} + \kappa (-\nu_e \pm P_e a_e) F_2^{\gamma Z} + \kappa^2 (\nu_e^2 + a_e^2 \pm 2 P_e \nu_e a_e) F_2^{Z} \\ x \tilde{F}_3 &= \kappa (-a_e \mp P_e \nu_e) x F_3^{\gamma Z} + \kappa^2 (2 \nu_e a_e \pm P_e (\nu_e^2 + a_e^2)) x F_3^{Z} \\ \text{where } \kappa &= \frac{1}{\sin^2 2\theta_w} \frac{Q^2}{Q^2 + M_Z^2} \\ \{F_2^{\gamma}, F_2^{\gamma Z}, F_2^{Z}\} &= \sum_q \{e_q^2, 2 e_q \nu_q, \nu_q^2 + a_q^2\} x (q + \bar{q}) \\ \{x F_3^{\gamma Z}, x F_3^{Z}\} &= \sum_q \{e_q a_q, \nu_q a_q\} 2 x (q - \bar{q}) \end{split}$$

- \tilde{F}_2 dominates $\tilde{\sigma}_{NC}^{e^{\pm}p}$.
- $x\tilde{F}_3$ contributes only at high Q^2 .
- \tilde{F}_L contributes at high y (see previous slide).

16/33

$d\sigma/dQ^2$ with positive and negative P_e

■ The difference between the two polarisation states clearly seen at higher- Q^2 .

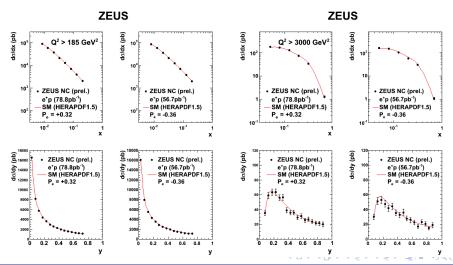

 \leftarrow RH: $d\sigma/dQ^2$ with positive P_e .

← LH: $d\sigma/dQ^2$ with negative P_e .

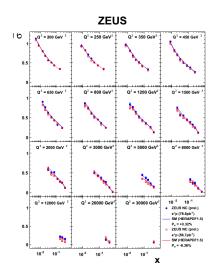
 \leftarrow RH/LH: ratio of cross sections positive P_e /negative P_e .

■ These results not included in the shown SM expectation (HERAPDF1.5).

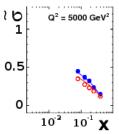
Asymmetry

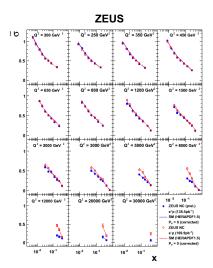


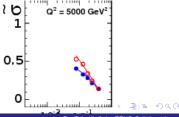
$$A^{+} = \frac{2}{P_{+} - P_{-}} \frac{\sigma^{+}(P_{+}) - \sigma^{+}(P_{-})}{\sigma^{+}(P_{+}) + \sigma^{+}(P_{-})}$$

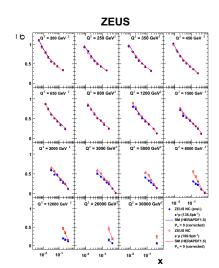

- \blacksquare A^+ sensitive to ν_a .
- \blacksquare A^+ increase with Q^2 .

 $x\tilde{F}_3 = \kappa(-a_e \mp P_e \nu_e) \times F_2^{\gamma Z} + \kappa^2(2\nu_e a_e \pm P_e(\nu_e^2 + a_e^2)) \times F_2^{Z}$


$|d\sigma/dx|$ and $d\sigma/dy$ with positive and negative P_e

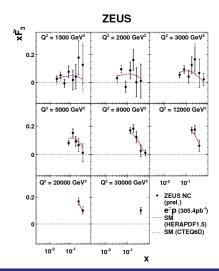

$\tilde{\sigma}$ with positive and negative $P_{\rm e}$


- Closed circles \rightarrow positive P_e .
- Open circles \rightarrow negative P_e .
- Cross-sections nearly identical at low- Q^2 .
- Effect of polarisation visible at high- Q^2 .


$\tilde{\sigma}$ with $P_e = 0$

- Closed circles \rightarrow Full e^+p data set.
- Open circles \rightarrow Previously measured unpolarised $e^-p \ \tilde{\sigma}$.
- Difference between e^+p and e^-p clearly seen.
 - SM predictions describe data well.

$x\tilde{F}_3$ Extraction (1)

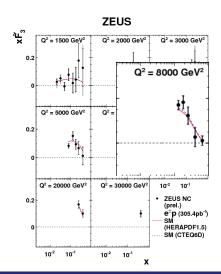


■ Difference between e^+p and e^-p gives xF_3 :

$$\sigma^{e^-p} - \tilde{\sigma}^{e^+p} = \frac{Y_-}{Y_+} 2x \tilde{F}_3$$

- Expected to contribute at high- Q^2 .
- 135.5 pb^{-1} e^+ data, and 169.9 pb^{-1} e^-p data.

$x\tilde{F}_3$ Extraction (2)



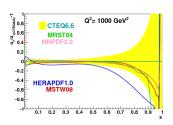
■ Difference between e^+p and e^-p gives xF_3 :

$$\left| \tilde{\sigma}^{e^- p} - \tilde{\sigma}^{e^+ p} = \frac{Y_-}{Y_+} 2x \tilde{F}_3 \right|$$

- Expected to contribute at high- Q^2 .
- 135.5 pb^{-1} e^+ data, and 169.9 pb^{-1} e^-p data.
 - Most precise xF̃₃ measurement with ZEUS.

$x\tilde{F}_3$ Extraction (2)

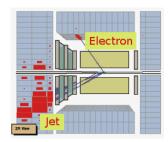
■ Difference between e^+p and e^-p gives xF_3 :


$$\left|\tilde{\sigma}^{e^-p} - \tilde{\sigma}^{e^+p} = \frac{Y_-}{Y_+} 2x\tilde{F}_3\right|$$

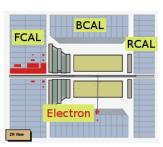
- Expected to contribute at high- Q^2 .
- 135.5 pb^{-1} e^+ data, and 169.9 pb^{-1} e^-p data.
 - Most precise xF̃₃ measurement with ZEUS.

High-x:Motivation

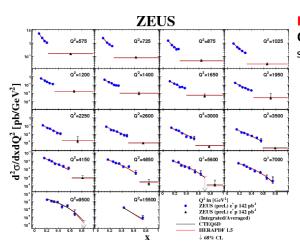
- The proton PDFs are poorly constrained at high-x.
 - Variations between PDF sets larger than uncertainty estimates.
- Large x physics is relevant to understanding physics at the LHC.
 - eg. for high mass searches at the LHC.



- Can we make a measurement to constrain the PDF uncertainty at high-x?
 - HERA measurements can cover the high-x region up to x = 1.

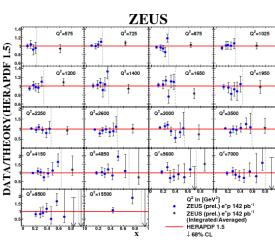

Event Topology

Event with a jet


- Jet Definition: $E_T > 10$ GeV, $\theta_{Jet} > 0.11$.
- x reconstructed from jet information.
 - $X < X_{limit}$

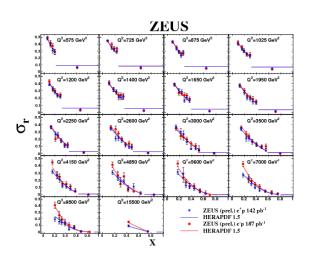
Events without a jet

- No Jet information available for reconstruction.
 - **Cannot measure** $x > x_{limit}$, but we know $x_{limit} < x < 1$.
 - Constrain high-x by using integrated cross-section.


High-x NC e^+p cross-section $d^2\sigma/dxdQ^2$

HERAPDF1.5 and CTEQ6D (see next slide).

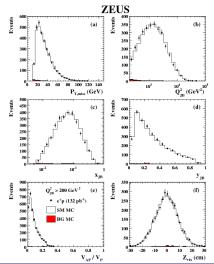
- Circles: points reconstructed using jets.
- Triangles: high-x integrated point.


High-x NC e^+p cross-section $d^2\sigma/dxdQ^2$: Comparison to HERAPDF1.5

SM expectation in good agreement with data

High-x NC e^+p cross-section $\tilde{\sigma}$: Comparison to e^-p

- Stars \rightarrow Full e^+p data set.
- Circles \rightarrow Previously measured e^-p σ_R .
- Difference between e^+p and e^-p clearly seen.
 - Described well by SM predictions.

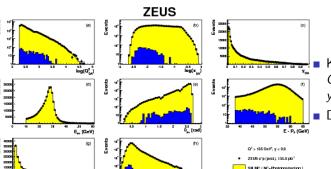

Summary

Summary

- The ZEUS HERA-II inclusive results are almost finished (preliminary NC results shown here).
 - e^+p CC results have already been published.
 - e^+p NC is almost finished.
 - Final high-x e^+p NC results shown, completing the high-x HERA-II analyses.
- EW theory tested in both inclusive CC and NC results.
 - Polarised CC and NC single and reduced cross-sections.
 - $\mathbf{x}\tilde{F}_3$ extraction.
- Results will help constrain the HERAPDF (CC results have already been included).
 - Unpolarised CC and NC single and reduced cross-sections.
 - High-x NC analysis will better constrain the PDFs at high-x.

Charged Current Sample (e^+p Data)

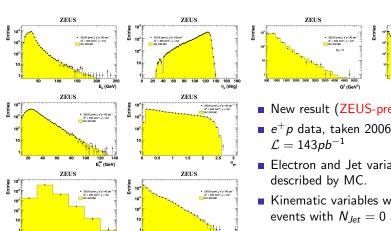
- Results published in 2010.
 - Eur. Phys. J. C (2010) 70: 945963.
- e^+p data, taken 2006-07, $\mathcal{L} = 132pb^{-1}$

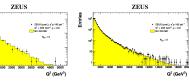

$$P_e = +33\%, \ \mathcal{L} = 75.8 pb^{-1}$$

$$P_e = -36\%, \ \mathcal{L} = 56.0 pb^{-1}$$

- Linear dependence of the cross-section on P_e .
- Data well understood.

Neutral Current Sample (e^+p Data)


- New result (ZEUS-prel-11-003).
 - Missing result of the HERA-II ZEUS high-Q² inclusive analyses.



- e^+p data, taken 2006-07, $\mathcal{L} = 135pb^{-1}$
 - $P_e = +32\%,$ $\mathcal{L} = 78.8 pb^{-1}$
 - $P_e = -36\%,$ $\mathcal{L} = 56.7 pb^{-1}$
 - Kinematic range: $Q^2 > 185 \, GeV$ and y < 0.9.
- Data well described.

hotoproduction IIC

Control Plots

- New result (ZEUS-prel-11-004).
- e^+p data, taken 2006-07,
- Electron and Jet variables well
- Kinematic variables well described for events with $N_{Jet} = 0$ and $N_{Jet} > 0$.