Top quark pair production cross section and properties of the top quark in pp̄ collisions at √s=1.96 TeV

Christian Schwanenberger

University of Manchester

on behalf of

CELEBRATING 350 YEARS

Europhysics Conference on High-Energy Physics Grenoble 07/21/2010

The Top Quark

u

d

H

discovered in 1995 by CDF and DØ: m_{top} ~ gold atom

 large coupling to Higgs boson ~ 1: important role in electroweak symmetry breaking?

short lifetime: τ ~ 5 · 10⁻²⁵s ≪ Λ⁻¹_{QCD}:
 decays before fragmenting
 → observe "naked" quark

Is the top quark the particle as predicted by the SM?

Outline

Top pair production cross section Top decay couplings Top mass Conclusions

Outline

Top pair production cross section Top decay couplings Top mass Conclusions

Top Quark Pair Production

Top Pair Signatures

Lepton+jets Signatures

07/21/2010 Top Pair Cross Section and Properties - Christian Schwanenberger -HEP 2011, Grenoble MANCHESTER

Dilepton Signatures

MANCHESTER 07/21/2010 Top Pair Cross Section and Properties – Christian Schwanenberger –

HEP 2011, Grenoble

THE ROYA

8

Top Pair Production Cross Section

- check if production rate is as expected in the SM
- test of the underlying theory: QCD
- powerful search for new physics beyond the SM

Measurement:
$$\sigma = (N_{obs} - N_{bg})/(\epsilon L)$$

5.4 fb⁻¹

Lepton+Jets Topological Cross Section

 kinematic properties allow separation between signal and background

use variables such as:

- energy-dependent quantities:
 e.g. transverse mass of leptonic top
- angular dependent:
- e.g. sphericity

 Random Forests of Boosted Decision Trees

 Image: Constraint of the second seco

Lepton+Jets Topological Cross Section

 kinematic properties allow separation between signal and background

use variables such as:

energy-dependent quantities:
 e.g. transverse mass of leptonic top

Random Forests of

Boosted Decision Trees

signal

angular dependent:

background

• e.g. sphericity

Lepton+Jets Topological Cross Section

b-tagging

Lepton+Jets Cross Section with b-tagging

very powerful tool to reduce the background

Combined Method

MANCHEMER []]/[]/[][] Top Pair Cross Section and Properties - Christian Schwanenberger - HEP [][], Grenoble []

Dilepton Cross Section with b-tagging

Top Pair Production Cross Sections

Combination: I+jets and dilepton

HEP 2011, Grenoble

17

good agreement with higher order QCD calculations

Outline

Top pair production cross section Top decay couplings Top mass Conclusions

Searches in Top Decays: b disappearance

Measurement of Branching Fractions

$$R = \frac{B(t \to Wb)}{B(t \to Wq)}$$

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Standard Model:

$$R_{SM} = \frac{|V_{tb}|^2}{|V_{tb}|^2 + |V_{ts}|^2 + |V_{td}|^2} = |V_{tb}|^2 = 1$$

unitarity of CKM matrix

<u>beyond</u> <u>SM:</u>

e.g. decay into 4th generation quark: R<1 sensitive to b disappearance

R changes fractions of b-tagged jets:

20

Measurement of Branching Fractions

Simultaneous Measurement of $\boldsymbol{\sigma}$ and R

Maximize total Likelihood function simultaneously for branching ratio R and top pair production cross section

Search for FCNC in Top Quark Decays

select 3 leptons, missing transverse momentum, 2 jets

Search for FCNC in Top Quark Decays

Search for FCNC in Top Quark Decays

Excluded Regions by Colliders

07/21/2010 Top Pair Cross Section and Properties - Christian Schwanenberger -HEP 2011, Grenoble 26 MANCHESTER

Outline

Top pair production cross section Top decay couplings Top mass Conclusions

What mass do we measure?

$$\mathcal{L} = \dots - \overline{\psi} M \psi \left(1 + \frac{H}{\nu} \right) \dots$$
• LO QCD: free parameter
$$\mathbf{m}_{top}$$

NLO QCD: dependent on the renormalisation scale M

"Bare parameters of QCD: gs, mu, md, ms, mc, man Kenormalised parameters of QCD: gs (M), mu (M), md (M), mg (M), mg (M), mg (M) (M, (M)

the concept of quark mass is convention-dependent!

Important to know....

measurement reconstructing decay products: depends on MC mass details
 how does MC mass relate to pole mass or running mass scheme?

• can we measure pole or MS mass in direct and well-defined way?

HEP 2011, Grenoble

29

Important to know....

measurement reconstructing decay products: depends on MC mass details
 how does MC mass relate to pole mass or running mass scheme?

• can we measure pole or MS mass in direct and well-defined way?

Top Quark Pole Mass

arXiv:1104.2887 [hep-ex]

• use b-tagged cross section since less dependent on mass

• difference due to MC mass interpretation is included into systematics

$$m_t^{\text{pole}} = 166.7_{-4.5}^{+5.2} \text{ GeV} \pm 2.9\%$$

• 1 σ consistent with Tevatron average: m_i = 173.3 ± 1.1 GeV

07/21/2010 Top Pair Cross Section and Properties - Christian Schwanenberger -HEP 2011, Grenoble MANCHESTER 31

Top Quark Pole Mass

• use b-tagged cross section since less dependent on mass

difference due to MC mass interpretation is included into systematics

$$m_t^{\text{pole}} = 166.7_{-4.5}^{+5.2} \text{ GeV} \pm 2.9\%$$

• 1 σ consistent with Tevatron average: m₁ = 173.3 ± 1.1 GeV

MANCHEMER 07/21/2010 Top Pair Cross Section and Properties - Christian Schwanenberger - HEP 2011, Grenoble 32

Top Quark MS Mass

(qd) DØ, L=5.3 fb⁻¹ better convergence of higher order resummation Moch, Uwer $m_t^{\overline{\mathrm{MS}}}$ (GeV) $\Delta m_t^{\overline{\mathrm{MS}}}$ (GeV) Theoretical prediction $m_t^{ ext{MC}} = m_t^{ ext{pole}} \ \ m_t^{ ext{MC}} = m_t^{\overline{ ext{MS}}}$ MC mass assumption $154.5^{+5.0}_{-4.3}$ NLO+NNLL [14] -2.9Ahrens et al. $160.0^{+4.8}_{-4.3}$ Approximate NNLO [15] -2.6— Measured σ(pp→ t+X) Measured dependence of σ arXiv:1104.2887 [hep-ex] Approximate NNLO NLO+NNLL MC mass = pole mass $_{2}$ 140 150 160 170 180 Top quark MS mass (GeV) • first extraction of MS mass taking selection efficiency into account +4.8 MS $m_{t}^{MS} = 160.0_{-4.3}^{+4.8} \text{ GeV}$ $\pm 2.8\%$

• 2σ consistent with Tevatron average: $m_{i} = 173.3 \pm 1.1$ GeV

• Tevatron average is more consistent with a pole mass!

07/21/2010 Top Pair Cross Section and Properties - Christian Schwanenberger -

HEP 2011, Grenoble 33

Outline

Top pair production cross section Top decay couplings Top mass Conclusions

Conclusions

Highlights of top pair production physics:

- top pair production
 8% precision, many channels analyses, differential cross
 - section, good agreement with NLO QCD predictions
- precision measurements (see talk by G. Petrillo)
 e.g. top mass
- top properties and searches (see also A. Grohsjean)
 high precision/sensitivity, some measured for first time
- excellent prospects for top quark physics at the Tevatron and the LHC

Backup

matrix element in LO QCD

matrix element in LO QCD

parton showers simulate higher orders, i.e. not only radiating additional gluons!

matrix element in LO QCD

parton showers simulate higher orders, i.e. not only radiating additional gluons!

matrix element in LO QCD

41

The Tevatron at FERMILAB: pp Collisions

07/21/2010 Top Pair Cross Section and Properties - Christian Schwanenberger -

HEP 2011, Grenoble 42

Combined Method

Source	$\sigma_{t \bar{t}} \; [{ m pb}]$	Offset [pb]	$+\sigma$ [pb]	$-\sigma$ [pb]	
Statistical only	7.58		+0.24	-0.24	
Muon identification		-0.04	+0.05	-0.05	
Electron identification		+0.14	+0.12	-0.12	
Triggers		-0.09	+0.09	-0.11	
Background normalization		+0.00	+0.07	-0.06	
Signal modeling		-0.06	+0.23	-0.21	
b-tagging		-0.14	+0.12	-0.12 -	
Monte Carlo statistics		-0.01	+0.06	-0.06	
Fake background		-0.01	+0.06	-0.04	
f_H		-0.00	+0.02	-0.02	
Jet energy scale		-0.03	+0.00	-0.00	
Jet reconstruction and identification		+0.18	+0.18	-0.17 🔫	
Luminosity		+0.12	+0.51	-0.44 🔫	
Template statistics		+0.00	+0.03	-0.03	
Other		+0.01	+0.14	-0.13	
Total systematics			+0.65	-0.58	
Fit result	7.78		+0.77	-0.64	

$$m_{top} = 172.5 \text{ GeV}$$
 $\sigma_{t\bar{t}} = 7.78_{-0.64}^{+0.77}$ (stat+syst+lumi) pb

±9%

MANCHESTER 07/21/2010 Top Pair Cross Section and Properties - Christian Schwanenberger - HEP 2011, Grenoble 43

Different Top Mass Definitions

\Rightarrow difference between \overline{MS} and pole mass is ≈ 10 GeV...

MANCHESTER 07/21/2010 Top Pair Cross Section and Properties - C

- Christian Schwanenberger -

HEP 2011, Grenoble 44

important test of NLO QCD unfolding of distributions

arXiv:1001.1900 [hep-ex]

important test of NLO QCD unfolding of distributions

arXiv:1001.1900 [hep-ex]

important test of NLO QCD unfolding of distributions

arXiv:1001.1900 [hep-ex]

47

important test of NLO QCD unfolding of distributions

arXiv:1001.1900 [hep-ex]

Ahrens, Ferrogia, Neubert, Pecjak, Yang arXiv:1006.4682 [hep-ph] 100 $\sqrt{s} = 1.96 \,\mathrm{TeV}$

no deviation from the SM NLO+NNLL: improvement

48

Tevatron Integrated Luminosity

Tevatron Instantaneous Luminosity

Collider Run II Peak Luminosity

peak luminosity of 4.0 · 10³² cm⁻² s⁻¹ took many years to achieve this!

MANCHESER 07/21/2010 Top Pair Cross Section and Properties – Christian S

- Christian Schwanenberger -

Top Pair Production Cross Sections

NEW MET+2, 3, \geq 4 jets (orthogonal)

combination: ±6% !

⇒ good agreement with SM in all channels

MANCHESTER 07/21/2010 Top Pair Cross Section and Properties – Christian Schwanenberger – HEP 2011, Grenoble

all channels measured except for τ_{had} τ_{had}