

Measurement of the Properties of Electroweak Bosons with the DØ detector

Hengne Li

LPSC, Grenoble On behalf of the DØ Collaboration

The Tevatron

- The Tevatron is a Proton-Antiproton Collider at 1.96 TeV
 - CP symmetric initial states
- A factory of W and Z bosons
 - DØ has >10 fb⁻¹ on tape ~ 5 M reconstructed $W \rightarrow ev$ events
- W and Z bosons are produced mainly by valence quarks (compared to LHC)
 - Low PDF uncertainties
 - Ideal for asymmetry measurements

The DØ Detector

- Tracking
 - 2 T magnet
 - $\delta P_T / P_T \sim 10\%$ @ 45 GeV
 - $\delta\eta \sim 1.5 \times 10^{-3}$
 - $\delta \phi \sim 4 \times 10^{-4}$
- Calorimeter
 - η coverage up to 4.2
 - $\delta E/E \sim 4\%$ @ 45 GeV
 - Thickness ~ $20 X_0$
 - Granularity $\phi \times \eta \sim 0.1 \times 0.1$
- Muon System
 - η coverage up to 2

Motivation: Currently, the W boson mass uncertainty is the limiting factor to tighten the constraint on the Higgs boson mass.

- W mass is a key parameter in the Standard Model (SM)
- Relation between W mass and other experimental observables:

- Precise measurements of W mass and Top mass constrain Higgs mass
- However, for equal constraint: $\delta M_W \sim 0.006 \ \delta M_t$

The limiting factor on the $M_{\rm H}$ prediction is δM_W

W Mass

Current world average central value of W mass (80.399 GeV) prefers a non-SM Higgs. (Knowing that SM M_H>114GeV bound has been set by LEP)

If the central value of M_W does not change in the future, a 15 MeV precision will exclude SM Higgs at 95% CL.

(P. Renton, ICHEP 2008)

W Mass

Analysis Strategy

A Typical W→ev Event

Reconstruct three observables:

Using Z->ee events for detector calibration

A Fast MC model to generate templates of the 3 observables with different W mass hypotheses. Fit the templates to the Data to extract W mass.

The Fast MC model:

- Event Generator: Resbos(CTEQ6.1)+Photos
- Parameterized Detector Model (Essential!!)

Results

DØ RunIIa 1 fb⁻¹, Center Calorimeter (CC) Electrons

 $M_W = 80.401 \pm 0.021(stat.) \pm 0.038(syst.) \text{ GeV}$

 $= 80.401 \pm 0.043 \text{ GeV}$

Most precise single experiment measurement

A ~19 MeV precision would be achieved with 10 fb⁻¹ full DØ dataset.

Phys. Rev. Lett. 103, 141801 (2009).

Let's take the result from observable M_T , and project to 10 fb⁻¹ full data set:

Uncertainties from observable <mark>M_T</mark>		Systematic		
	Statistical	Experimental (e.g. Energy Response)	Theoretical (e.g. PDF)	
RunIIa 1 fb ⁻¹	23 MeV Decrease	35 MeV Decrease	12 MeV Remain the same	
RunIIa+RunIIb 10 fb ⁻¹ (expected)	♥ 8 MeV	✓ (Z→ee statistics)13 MeV	 (independent of this 12 MeV particular analysis) 	

Theoretical uncertainty will be a more important contribution to the precision in future measurements Need to improve our knowledge of PDFs.

- W Boson is mostly produced by valence quark pairs at Tevatron
- u(ubar) quark carries more momentum than d(dbar) quark
- Thus:
 - W+ preferentially boosted along proton direction
 - W⁻ preferentially boosted along anti-proton direction

W Charge Asymmetry

W Charge Asymmetry: At the levatron; W and Z bosons mostly produced by <u>valence</u> quark(<u>khni</u>)hiliation. A(y_W) = <u>dyw</u> <u>dyw</u> <u>dyw</u> e.g. W⁺ mostly in the production of the valence u(u) <u>dyw</u> <u>dyw</u> <u>dyw</u> Valence u(u) <u>dyw</u> <u>dyw</u> <u>dyw</u> <u>dyw</u> Valence u(u) <u>dyw</u> <u>dyw</u> <u>dyw</u> <u>dyw</u> Valence u(u) <u>dyw</u> <u>dyw</u> <u>dyw</u> <u>dyw</u> <u>dyw</u> Walence u(u) <u>dyw</u> <u>dyw</u> <u>dyw</u> <u>dyw</u> <u>dyw</u> <u>dyw</u> Were, u(u) <u>dyw</u> <u>dyw</u> <u>dyw</u> <u>dyw</u> <u>dyw</u> <u>dyw</u> Where, u(x) and d(x) are the PDFs of the valence u quark and d quark in the proton

• And, x1 and x2 are the momentum fractions in the y proton and anti-proton $x_{1,2} = \frac{1}{\sqrt{s}} e^{\frac{1}{2}y}$

Directly constrains PDFs, but the 4-momentum of W is not easy to reconstruct, because the neutrino longitudinal momentum (Pz) is not direc(by) measurable at hadron colliders $\approx \frac{u(x)}{d(x)}$ Alternative observable is the charge digymmetry of the lepton from the W decay.

One can of cause try to infer the W longitudinal momentum from the W mass constraint within a two fold ambiguity.

W Charge Asymmetry

Lepton Charge Asymmetry:

Directly observable but counterbalances the W charge asymmetry, due to the V-A asymmetry and angular momentum conservation.

E.g. for W+:

Results: Muon charge asymmetry, DØ RunIIb 4.9 fb⁻¹

EPS-HEP 2011, 22 July, 2011

- In the process: $q\bar{q} \rightarrow Z/\gamma^* \rightarrow e^+e^-$
 - fermion- γ^* coupling contains only vector component
 - fermion-Z coupling contains both vector and axial-vector components

Vector coupling:
$$g_v^f = I_3^f - 2Q_f \sin^2 \theta_V g^{\sigma} z^{\rho/\gamma^*}$$
 e^+ weak
ingleAxial-vector coupling: $g_a^f = I_3^f$ $e^ g_A^f = I_3^f$

• Give rise to non-zero Forward-Backward Asymmetry (A_{FB}) in the final states

Ζ/γ* Forward-Backward Asymmetry

Motivation

Z/Υ^*A_{FB}

- At Tevatron, Z/ γ^* is mostly produced by light valence quark pair, u-ubar or d-dbar Coupling of Z/ γ^* to fermions contains both vector and axial-vector components.
- From the observable A_{FB} , we can: Leads to asymmetry in the polar angle θ^* of the negatively charged lepton in the
 - Precisely measure sin²0 w based on Z to light quark couplings
 - Directly probe the compling of Zhrenten light quarks with Z pole.
 - Sensitive to additional heavy gauge bosons.
- Investigate possible new phenomena, e.g. new neutral gauge boson Z'
 - Around Z⁻pole, A_{FB} is dominated by interference of vector and axial-vector coupling $\overline{get_s}$ $\overline{f_s}$ $\overline{f_$
 - Far away above Z-pole, A_{FB} is dominated by Z/ γ * interference, which is sensitive to > 0new physics. $\sigma_F + \sigma_B \quad B: \quad \cos(\theta^*) < 0$ new physics.

EPS-HEP 2011, 22 July, 2011

Z/γ* Forward-Backward Asymmetry

Most precise direct measurement of couplings of Z to light quarks u and d.

Accepted 6/29/11: Phys. Rev.D, arXiv:1104.4590

- W Boson Mass: constraint on the SM Higgs boson mass
- W charge asymmetry: direct constraint on the valence quark PDFs
- A_{FB}: precise measurement of $\sin^2\theta_W$ and direct probe the Z-light quark couplings
- All the three analysis could not be easily challenged by LHC:
 - Tevatron is a Proton-Antiproton collider

	ΔM_W (MeV)		
Source	m_T	p_T^e	$\not\!$
Electron energy calibration	34	34	34
Electron resolution model	2	2	3
Electron shower modeling	4	6	7
Electron energy loss model	4	4	4
Hadronic recoil model	6	12	20
Electron efficiencies	5	6	5
Backgrounds	2	5	4
Experimental subtotal	35	37	41
PDF	10	11	11
QED	7	7	9
Boson p_T	2	5	2
Production subtotal	12	14	14
Total	37	40	43

TABLE II. Systematic uncertainties of the M_W measurement.

W Charge Asymmetry

1.8

Pseudorapidity

2

1.6

1.2

1.4

stat. error

total error

1.4

1.2

CTEQ6.6 central value

CTEQ6.6 uncertainty band

1.6

1.8

Pseudorapidity

2

Source		$\Delta sin^2 \theta_{eff}^{lept}$
Statistical		0.00080
Systematics		0.00061
	PDFs	0.00048
	EM scale/reso	0.00029
	MC stat.	0.00020
	EMID	0.00008
	Bkg. Modeling	0.00008
	Charge misID	0.00004
	Higher order	0.00008
Total		0.00102

	g^u_A	g_V^u	g^d_A	g_V^d
SM	0.500	0.196	-0.500	-0.346
DØ	0.543 ± 0.045	0.216 ± 0.016	-0.335 ± 0.047	-0.491 ± 0.025

TABLE VII: Measured Z to light quark couplings compared with SM values.

- •The Tevatron and DØ Detector
- •W Mass and Width Precision Measurement
- •W (muon) Charge Asymmetry using $W \rightarrow \mu\nu$ events
- •Forward-Backward Charge Asymmetry using $Z/\gamma^* \rightarrow e^+e^-$ events