Precise measurements of the top mass and direct measurement of the mass difference between top and antitop quarks at DØ

Gianluca Petrillo (for the DØ collaboration)

University of Rochester

July 21st, 2011, International Europhysics Conference on High-Energy Physics

G. Petrillo (for DØ collaboration)

fop mass measurements at DØ

Introduction

- Neutrino and Matrix Weighting
 ℓℓ + jets final state
- Matrix Element method
 ll + jets final state
 l + jets final state
- Oombination of DØ results
- 5 Top/antitop mass difference

Summary

프 🖌 🖌 프

Introduction

- Neutrino and Matrix Weighting
 ll + jets final state
- Matrix Element method
 ll + jets final state
 l + jets final state
- 4 Combination of DØ results
- 5 Top/antitop mass difference
- Summary

- top mass is a free parameter of the Standard Model
- it is an important parameter for the evaluation of the loop corrections to W boson mass and a constraining parameter for H boson mass (*left*)
- top is the only quark that can be measured free rather than in a bound state: it decays before it can hadronize

90% CL limits on SM Higgs boson mass from measurements, as function of m_t [Erler, PRD **81**, 051301 (2010)]

A B F A B F

Introduction

- Neutrino and Matrix Weighting
 \$\ell\$ \ell\$ + jets final state
- Matrix Element method
 ll + jets final state
 l + jets final state
- 4 Combination of DØ results
- 5 Top/antitop mass difference
- Summary

$\ell\ell + jets$ final state

Events selection outline:

- two isolated leptons (*ee*, $e\mu$ or $\mu\mu$) with opposite charge
- at least 2 reconstructed jets
- signal purities of 80 85% (*ee* and *e* μ) and 60% (*e* μ) are achieved

G. Petrillo (for DØ collaboration)

Top mass measurements at DØ

Neutrino weight

Our final state is not fully reconstructed:

- 6 final state particles of known mass \Rightarrow 18 unknown
- energy and direction of *b*, \bar{b} , *e* and μ are measured \Rightarrow 6 left
- W mass (m(ℓν) = M_W), same top mass (m_t = m_{t̄}) ⇒ 3 left: two neutrino unknown (e.g. η_ν and η_{ν̄}), plus the top mass M_t

We define a "weight" to quantify the agreement of the missing energy $\vec{E}_{T}^{\text{calc}}$ calculated from event kinematics with the measured one, \vec{E}_{T}^{obs} :

$$w\left(\eta_{\nu},\eta_{\bar{\nu}},\boldsymbol{M}_{t}\right) = \exp\left[-\left(\frac{\boldsymbol{E}_{x}^{\mathsf{obs}}-\boldsymbol{E}_{x}^{\mathsf{calc}}}{\sqrt{2}\,\sigma_{x}^{u}}\right)^{2}\right]\exp\left[-\left(\frac{\boldsymbol{E}_{y}^{\mathsf{obs}}-\boldsymbol{E}_{y}^{\mathsf{calc}}}{\sqrt{2}\,\sigma_{y}^{u}}\right)^{2}\right]$$

including $\not\!\!E_T$ resolution $\sigma_{x/y}^u$. The dependency on $\eta_{\nu/\bar{\nu}}$ is resolved by convolving the weight with the distributions $\rho(\eta_{\nu/\bar{\nu}})$ predicted for $t\bar{t}$:

$$w\left(\boldsymbol{M}_{t}\right) = \int w\left(\eta_{\nu}, \eta_{\bar{\nu}}, \boldsymbol{M}_{t}\right) \rho\left(\eta_{\nu}\right) \rho\left(\eta_{\bar{\nu}}\right) \, \mathrm{d}\eta_{\nu} \, \mathrm{d}\eta_{\bar{\nu}}$$

Templates method with weights (I): building templates

 assign to each event the weigth *w* as function of the top mass *M_t* assumed to compute the event kinematics)

- 2. for each event, extract from its weight the values of the average μ_W and its RMS σ_W ; they don't depend explicitly on M_t anymore
- 3. merge μ_W and σ_W from all the events in the sample into a 2D template h_{sample} ; for signal samples, it will depend on the sample top mass m_t : $h_{\text{sig}}(m_t)$

w(x,)

w(x_i, σ M.

Templates method with weights (II): mass extraction

Signal template (top mass 175 GeV/c²) and all backgrounds template

4. compute a likelihood for the *N* events in data to follow signal (with different m_t) + background templates:

$$L(m_t) = \prod_{i=1}^{N} f h_{sig} \left(\mu_w^{(i)}, \sigma_w^{(i)}; m_t \right) + (1 - f) h_{bck} \left(\mu_w^{(i)}, \sigma_w^{(i)} \right)^{+ L}$$

5. maximize the likelihood to find the best m_t estimator

G. Petrillo (for DØ collaboration)

Top mass measurements at DØ

m;

160 170

Calibration

- our mass estimator is biases due to the chosen approximations, selection etc.
- a calibration is performed to correct for these biases
- "pseudo-datasets" are built from simulated events, using a known value of the top mass and sample composition
- the very same analysis procedure for measured data is then applied on them too
- calibration is based on the average and RMS of the results, for each input top mass

Measurement in $e\mu$ + jets by Neutrino Weighting

The 202 events selected in $e\mu$ final state from 4.3 fb⁻¹ of DØ data yield to

 $m_t = 172.7 \pm 2.8(\text{stat}) \pm 2.1(\text{syst}) \text{ GeV}/c^2$

Main systematic uncertainties (GeV/ c^2):

Jet Energy Scale	1.4
b/light jet response	0.8
Signal modelling	1.0

Conference note DØ 6104-CONF

Combined result for 5.3 fb⁻¹:

 $m_t = 173.3 \pm 2.4$ (stat) ± 2.1 (syst) GeV/ c^2

G. Petrillo (for DØ collaboration)

Top mass measurements at DØ

EPS-HEP, July 21st , 2011

- Neutrino and Matrix Weighting
 ll + jets final state
- Matrix Element method
 ll + jets final state
 l + jets final state
- 4 Combination of DØ results
- 5 Top/antitop mass difference

Summary

Matrix Element method (I): process probability

At the core of the Matrix Element method there is the probability of measuring an event from a certain process, which can depend on the parameters we want to measure, e.g. the top mass m_t :

$$P(x, m_t) = \frac{1}{\sigma(m_t)} \int \sum_{\text{flavours}} f(q_1) f(q_2) \sigma(y, m_t) \mathcal{W}(x, y) \, dq_1 \, dq_2 \, dy$$

- the probability $f(q_{1/2})$ of having a specific initial state (Parton Distribution Functions)
- the scattering matrix element \mathcal{M} for a final-state parton configuration "y" (including 4-momenta of all the 6 final state particles)
- the probability *W* of reconstructing the scattering final state "*y*" as our measured jets/lepton objects "*x*" (transfer functions)

Top mass measurements at DØ

Matrix Element method (II): event probability

Prob. to observe an event x (including the detector acceptance A(x)):

 $P_{\text{evt}}(x, m_t, f) \propto A(x) \left[f P_{\text{sig}}(x, m_t) + (1 - f) P_{\text{bkg}}(x) \right]$

The processes are mixed by a fraction f (a free parameter).

Signal

<u>Background</u>

 P_{sig} depends on the top mass m_t . Its $\mathcal{M}(q_1q_2 \rightarrow t\overline{t})$ is computed analytically at Leading Order. We pick a process from the largest background, Z + 2 jets. The $\mathcal{M}(q_1q_2 \rightarrow Z + 2$ jets) is computed using VECBOS (LO).

For $e\mu$ + jets final state, we use $Z \rightarrow \tau^+ \tau^- \rightarrow e\mu + 4\nu$ and an additional transfer function connecting τ with e/μ from its decay.

G. Petrillo (for DØ collaboration)

Top mass measurements at DØ

EPS-HEP, July 21st , 2011

Matrix Element method (III): sample probability

Probabilities from all the events are combined in the likelihood to measure our actual data sample, as function of our parameters:

- the likelihood is evaluated numerically using tens of hypotheses for the top mass m_t and the signal fraction f
- maximization of L provides estimators of the two parameters
- a calibration of *L* point by point corrects for biases

G. Petrillo (for DØ collaboration)

Top mass measurements at DØ

Measurement in $\ell\ell$ + jets by Matrix Element

The analysis of 5.4 fb⁻¹ of DØ data (using 73, 266 and 140 events from *ee*, $e\mu$ and $\mu\mu$ final states) yields:

 $m_t = 174.0 \pm 1.8(\text{stat}) \pm 2.4(\text{syst}) \,\text{GeV/}c^2$

Dominant systematic uncertainties (GeV/ c^2):

Jet Energy Scale	1.5
<i>b</i> /light jet response	1.6
Signal modelling	0.8

Accepted by PRL (arXiv:1105.0320 [hep-ex])

G. Petrillo (for DØ collaboration)

fop mass measurements at DQ

ℓ + jets final state

Events selection outline:

- only one isolated electron/muon
- exactly 4 reconstructed jets
- at least one jet identified as coming from a b quark
- purities of \approx 70% (e + 4 jets) and \approx 75% ($\mu_{
 m o}$ + 4 jets) are achieved $_{
 m o}$

Top mass measurements at DØ

Matrix Element method for ℓ + jets final state

The Matrix Element method applied on the ℓ + jets final state sharesmany of the features used for the $\ell\ell$ + jets.SignalBackground

 P_{sig} depends on the top mass m_t . Its $\mathcal{M}(q_1q_2 \rightarrow t\bar{t})$ is computed analytically at Leading Order. $\begin{array}{c} q & \mathbf{r} \\ \mathbf{r}$

We pick the process from the largest background, W + 4 jets. Its $\mathcal{M}(q_1q_2 \rightarrow W + 4$ jets) is computed using VECBOS (LO).

The main difference in the *method* is the use of an additional free parameter, k_{JES} , representing a residual Jet Energy Scale correction specific to this data sample.

G. Petrillo (for DØ collaboration)

Top mass measurements at DØ

Matrix Element method: in situ JES

- Jet Energy Scale: detected energy $E_{raw} \Rightarrow$ estimated jet energy E_x
- transfer functions: particle jet energy $E_x \Rightarrow$ parton energy E_y

Additional free parameter: global residual JES shift k_{JES}

- can compensate a global residual bias of JES
- affects directly the jet transfer functions
- is strongly constrained by the presence of W o q ar q' in the signal

Top mass measurements at DØ

Measurement in ℓ + jets by Matrix Element

The analysis of 2.6 fb⁻¹ of DØ data (using 312 e + jets and 303 μ + jets events) yields:

 $m_t = 176.0 \pm 1.3(\text{stat}+\text{JES}) \pm 1.0(\text{syst}) \text{ GeV}/c^2$ with $k_{\text{JES}} = 1.013 \pm 0.008$.

Dominant systematic uncertainties (GeV/ c^2):

Signal modelling	±0.74
Jet energy resolution	± 0.32
Data – MC jet response	± 0.28
Jet ID efficiency	± 0.26

Combined result for 3.6 fb⁻¹ DØ data:

 $m_t = 174.9 \pm 1.1$ (stat+JES) ± 1.0 (syst) GeV/ c^2

Accepted by PRD (arXiv:1105.6287 [hep-ex])

- Neutrino and Matrix Weighting
 ll + jets final state
- Matrix Element method
 ll + jets final state
 - ℓ + jets final state
- Oombination of DØ results
- 5 Top/antitop mass difference

Summary

Combination of top mass measurements by DØ

DØ has combined the results from lepton+jet, di-lepton and lepton+track analyses from Tevatron Runl and Runll up to 5.4 fb $^{-1}$ of data The Best Linear Unbiased *Estimator* technique has been used in order to take into account the correlations between the different measurements

DØ top quark mass combination:

 $m_t = 175.08 \pm 0.77(\text{stat}) \pm 1.25(\text{syst}) \text{ GeV}/c^2$

G. Petrillo (for DØ collaboration)

EPS-HEP, July 21st , 2011

- Neutrino and Matrix Weighting
 ll + jets final state
- Matrix Element method
 ll + jets final state
 l + jets final state
- 4 Combination of DØ results
- 5 Top/antitop mass difference
 - Summary

Top/antitop mass difference

- Lorentz-invariant local guantum field theories (including the Standard Model) are invariant for CPT transformations
- as a consequence, particles and antiparticles must have the same mass
- this has been confirmed for charged leptons, protons etc.
- guarks can't be tested directly because they immediately • hadronize
- the unique exception is the guark top

DØ employs the Matrix Element method to measure the difference between top and antitop guarks.

Top/antitop mass difference: method

- the analysis method is based on the ℓ + jets mass measurement, with which it shares the event selection
- a custom version of the PYTHIA generator is used, which allows different masses for t and \overline{t} (the other masses are not changed)
- the parameters of the event probabilities are the two masses: $P_{\text{evt}}(m_t, m_{\overline{t}}, f)$
- in the likelihood the two parameters are "rotated" to the difference and mean value: $L(\Delta m, m_{top}, f)$

no JES global shift parameter is used

G. Petrillo (for DØ collaboration)

Measurement of top/antitop mass difference

Combination with the previous DØ result: (3.6 fb⁻¹ overall)

 $m_t - m_{\bar{t}} = 0.84 \pm 1.81$ (stat) ± 0.48 (syst) GeV/ c^2

Submitted to PRD (arXiv:1106.2063 [hep-ex])

G. Petrillo (for DØ collaboration)

Top mass measurements at DØ

- Neutrino and Matrix Weighting
 ll + jets final state
- Matrix Element method
 ll + jets final state
 l + jets final state
- 4 Combination of DØ results
- 5 Top/antitop mass difference

Summary

- the mass of the quark top is an important parameter for many theories and predictions
- the precision achieved by DØ alone is better than 1%
- the measurements in the various final states are consistent
- the precision of the measurement is now limited by systematic uncertainties (already with half the Tevatron data)
- DØ has also an indirect top mass measurement from production cross section (described by Christian Schwanenberger this morning)

Backup

G. Petrillo (for DØ collaboration)

Top mass measurements at DØ

< □ ▶ < 큔 ▶ < ె ▶ < 王 ▶ < 王 ▶ < 王 ♥ 오 ↔ EPS-HEP, July 21st, 2011 29 / 33

Count of degrees of freedom:

	ℓ + jets	<i>ee</i> + jets	$e\mu$ + jets	$\mu\mu$ + jets
initial and final state	8 ×4			
known particle masses	1 ×8	1 ×8		
detected η and $arphi$	2 ×5	2 ×4		
four-momentum conservation	4	4		
narrow width approximation	no	2		
detected electron energy	no	2	1	0
final degrees of freedom	10	8	9	10

Integration variables:

$$\ell + \text{jets} : m_{W_1}, m_{W_2}, m_{t_1}, m_{\bar{t}}, E_{\ell}, \vec{p}_{Tq_1}, \vec{p}_{Tq_2}$$

$$ee + \text{jets} : p_{b_1}, p_{b_2}, m_{W_1}, m_{W_2}, \vec{p}_{T\nu_1} - \vec{p}_{T\nu_2}, \vec{p}_{Tt\bar{t}}$$

$$e\mu + \text{jets} : \text{as } ee + \text{jets}, \text{plus } p_{\mu}$$

$$\mu\mu + \text{jets} : \text{as } ee + \text{jets}, \text{plus } p_{\mu_1} \text{ and } p_{\mu_2}$$

Complete systematic uncertainties for ℓ + jets

± 0.74
± 0.24
± 0.16
± 0.32
± 0.28
± 0.26
± 0.21
± 0.17
± 0.20
± 0.14
± 0.10
±1.02
±
±

< □ > < □ > < Ξ > < Ξ > < Ξ ≥ < Ξ = のへの

Systematic uncertainty from jet flavour

The dominant uncertainty on the ℓ + jets analysis with Matrix Element method *was* from the differt calorimeter response to jets from gluons, light and *b* quarks, $\pm 0.98 \text{ GeV}/c^2$.

- every particle in a (simulated) jet contributes to its energy according to its "single particle response"
- detector simulation was used to estimate them (no results from test beam are availabe for DØ calorimeter), leading to biases
- jet energy scale corrects this on average, ignoring jet composition
- now the parameters of single particle responses are tuned to reproduce the jet response from data, removing the bias
- simulated jets are corrected accordingly
- the systematic uncertainty has dropped to $0.28 \, \text{GeV}/c^2$

Back to the ℓ + jets ME results

Top/antitop mass correlation

We can write our likelihood as $L(m_t, m_{\bar{t}})$ instead than $L(\Delta m, m_{top})$:

