

Measurement of Top Quark Properties at $\sqrt{s}=1.96$ TeV Using the D0 Detector

Alexander Grohsjean on behalf of the D0 collaboration

🛟 Fermilab

EPS-HEP 2011 July, 21st 2011 Grenoble

Top Quark Physics

Top Quark Physics

deviations could be due to antiproton

 additional contributions to production like stop pairs, Z', etc.

why measure spin correlations?

QCD production to **EW** decay

♦ test the full chain from

- additional decay of top quark to e.g a charged Higgs boson
- observation of spin correlation would set an other upper limit on the top quark lifetime

EPS 2011 – Alexander Grohsjean

Top Quark Spin Correlation

- even though top quarks are not produced in a polarized state, their spins are correlated
- the spin correlation strength A can be defined as:

$$A = \frac{N_{\uparrow\uparrow} + N_{\downarrow\downarrow} - N_{\uparrow\downarrow} - N_{\downarrow\uparrow}}{N_{\uparrow\uparrow} + N_{\downarrow\downarrow} + N_{\uparrow\downarrow} + N_{\downarrow\uparrow}}$$

- it depends on the production mode, namely quark-antiquark annihilation or gluon-gluon fusion
 - => different correlation strength for Tevatron and LHC

- as any spin it also depends on the quantization axis with respect to which it is defined to
- here, the so-called beam basis is used
 - defined by the direction of the incoming quark
 - simple to construct
 - best for top quarks produced at threshold

• almost highest correlation strength

=> correlation strength at NLO using beam basis at Tevatron:

 $A = 0.777 \pm 0.042$

(Ce)

• top quark lifetime less than $\Lambda_{_{QCD}}$

→ the spin does not flip and is still visible in the angular distributions of the decay products

$$\frac{1}{\sigma} \frac{d \sigma}{d \cos \theta_i} = \frac{1}{2} (1 + \alpha_i \cos \theta_i)$$

- spin analyzing power α = 1 for charged leptons and down-type quarks
- despite the small branching fraction of the leptonic W decay, the dilepton channel is the golden channel for spin analysis:
 - leptons are easier to identify then down-type quarks
 - leptons can be well measured
 - smallest background contamination

 putting all together, spin correlations can be measured by studying angular distributions of charged leptons

$$\frac{1}{\sigma} \frac{d^2 \sigma}{\cos \theta_1 \cos \theta_2} = \frac{1}{4} (1 - C \cos \theta_1 \cos \theta_2)$$

where $C = A \alpha_1 \alpha_2$

- measurement tests the full chain from production to decay
- sizeable difference between correlated and uncorrelated spins at parton level
- main challenge:
 - reconstruction of undetected neutrino from W decay

- to calculate $\cos \theta_1 \cos \theta_2$ for a single event, both neutrino momenta need to be reconstructed
 - assume top masses to be 172.5 GeV
 - W masses to be 80 GeV
 - scan over neutrino pseudo-rapidities
 - for each point in phase space weight all possible solutions by comparing the neutrino momenta to the measured missing transverse momentum

• use weighted mean of all solutions as estimator for $\cos \theta_1 \cos \theta_2$

• perform a binned maximum likelihood fit

- mixing signal templates from MC@NLO with and without spin correlation as a function of correlation strength C
- using different templates for each kind of background
- include systematic uncertainties as free parameters
- 200 $D = 5.4 \text{ fb}^{-1}$ \rightarrow Data 150 100 $D = 5.4 \text{ fb}^{-1}$ \rightarrow Data 150 Backgrounds50 0 0.5 1 $Cos \theta_1 cos \theta_2$
- use approach of Feldman and Cousins to set limits or extract central value with 68% C.L.

spin correlation strength C extracted from
 441 dilepton candidate events (~74% purity) :

 $C = 0.10 \pm 0.45 (stat+syst)$

-0.66 < C < 0.81 @ 95% C.L.

- result consistent within 2 SD with QCD prediction of C = 0.777 ± 0.042 (NLO)
- measurement dominated by statistical uncertainty: ~ 0.4
- largest systematic effect from MC template statistics: ~0.07
- All details can be found on arXiv: 1103.1871

- matrix element methods yield
 - most precise results for top mass measurements
 - excellent tools to search for new particles Antiproton
- whole event kinematic used to calculate the probability of an event to arise from a given process under certain assumptions

$$P(x;H) \propto \int d\epsilon_1 d\epsilon_2 f_{PDF}(\epsilon_1) f_{PDF}(\epsilon_2) \frac{|M(y;H)|^2}{\epsilon_1 \epsilon_2 s} W(x,y) d\phi_6$$

 f_{PDF} : parton density functions M(y; H): ME under hypothesis H for partons y W(x, y): transfer functions for measuring y as x

21st July 2011

 a powerful variable R can be defined based on the matrix element including spin correlation (C) and no correlation (U) (S. Parke et al., PLB 411,173 (1997); K. Melnikov et al.,

arXiv:1103.2122)

$$R = \frac{P_{sgn}(H=C)}{P_{sgn}(H=C) + P_{sgn}(H=u)}$$

- excellent separation at parton level
- biggest loss in sensitivity due to the undetected neutrinos

 a powerful variable R can be defined based on the matrix element including spin correlation (C) and no correlation (U) (S. Parke et al., PLB 411,173 (1997); K. Melnikov et al.,

arXiv:1103.2122)

$$R = \frac{P_{sgn}(H=C)}{P_{sgn}(H=C) + P_{sgn}(H=u)}$$

- excellent separation at parton level
- biggest loss in sensitivity due to the undetected neutrinos

fraction of events with correlated top quark spins from
 485 dilepton candidate events (~71% purity) :

f = 0.74 ± 0.41 (stat+syst) f > 0.14 @ 95% C.L.

- f=0 excluded at 97.7% C.L.
 (99.6% expected)
- translating this into correlation strength:
 C = 0.57±0.31 (stat+syst)
- well consistent with QCD prediction
 C = 0.777 ± 0.042 (NLO)
- measurement dominated by statistical uncertainty: ~ 0.27
- largest systematic effect from MC template statistics: ~0.07
- all details can be found in PRL 107,032001 (2011)

Top Quark Physics

Measurement of W Helicity

- SM predicts left-handed coupling of W boson to fermions
- => positive helicity state highly
 suppressed
- verification of V-A coupling of
 W → tb as predicted by SM
- most powerful variable to distinguish different helicity states cos θ*: angle between down-type decay particle of W boson (charged lepton, d or s quark) and top quark in W rest frame

Analysis makes use of both : lepton+jets and dilepton channel

- in each channel channel (e+jets, μ+jets, ee, eμ, μμ) a likelihood discriminant is used
 - to check background modeling
 - to allow for a clean measurement in signal region

- including jet and lepton resolutions, $\cos \theta^*$ is reconstructed using:
 - fixed W mass and top mass
 - zero transverse momentum of total event
- for hadronic W decay down-type fermion can't be identified so one jet is randomly picked and l cos θ*lis used to separate f₀ from f/f
- samples of pure V-A and V+A couplings are re-weighted to form templates of each helicity state

lep. W l+jets

had. W l+jets

lep. W dilepton

simultaneous fit f_₀ and f_₁ using 5.4 fb^₁ of
 lepton+jets and dilepton events yields +°

 $f_{0} = 0.669 \pm 0.078(\text{stat}) \pm 0.065(\text{syst})$ $f_{1} = 0.023 \pm 0.041(\text{stat}) \pm 0.034(\text{syst})$

Results

- measurement in good agreement with SM expectation
- Iargest systematic uncertainty on f.:
 - top pair modeling: 0.033
- most precise determination of f_{d} and f_{d} today
- All details can be found in PRD 83,032009 (2011)

Top Quark Physics

• QCD color charge is locally conserved and flows like electrical charge

- ◆ pulling apart color from its anti-color takes a lot of energy (~1GeV/fm)
 → color connections are formed
- pairing of connections depends on nature of decaying particle

(singlet: color neutral objects like W,H,..) (octet: gluons)

- color connection can break up
- hadrons are built between the color connected partons

=> jet shape influenced by color flow

 color flow best described by the so-called jet pull, i.e. the vectorial sum of all calorimeter cells within a jet (Gallicchio et al., PRL 105 022001)

$$\vec{p} = \sum_{i} \frac{E_T^i |r_i|}{E_T^{jet}} \vec{r}_i$$

- \vec{r}_i : position of jet cell i relative to jet center
- E_T^i : transverse energy of cell i
- E_T^{jet} : transverse jet energy
- cells assigned to closest jet

=> jet pull vectors point more towards each other for jets from color singlets than octets

œ

 color flow best described by the so-called jet pull, i.e. the vectorial sum of all calorimeter cells within a jet (Gallicchio et al., PRL 105 022001)

$$\vec{p} = \sum_{i} \frac{E_T^i |r_i|}{E_T^{jet}} \vec{r}_i$$

- \vec{r}_i : position of jet cell i relative to jet center
- E_T^i : transverse energy of cell i
- E_T^{jet} : transverse jet energy
- cells assigned to closest jet

=> jet pull vectors point more towards each other for jets from color singlets than octets

- distinguish between jets from color singlets and octets
 - separate different processes with same final states
 - excellent to search for new physics
- example: $ZH \rightarrow Zb\overline{b}$ signal vs. Z+jets background

- jet pull well described by Monte Carlo
- understand degradation of jet pull from pure MC truth information to full detector simulation due to different effects (calorimeter granularity, noise, pile-up, etc.)
- account for inhomogeneity of the detector
- checking influence of jet splitting and merging

[m]

understand degradation of jet

pull from pure MC truth
information to full detector
simulation due to different
effects (calorimeter granularity,
noise, pile-up, etc.)

• jet pull well described by Monte Carlo

- account for inhomogeneity of the detector
- checking influence of jet splitting and merging

η = 0

η = 1

- jet pull well described by Monte Carlo
- understand degradation of jet pull from pure MC truth information to full detector simulation due to different effects (calorimeter granularity, noise, pile-up, etc.)
- account for inhomogeneity of the detector
- checking influence of jet splitting

- test the sensitivity to color flow in top pair events by verifying that the hadronic W boson is measured to be a color singlet
- apart from standard MC Madgraph+Pythia events with color octet W boson used
- fraction f_{singlet} of events with light quark jets from color singlet extracted
- best sensitivity in the central detector region when both light jets are close to each other and their invariant mass is about the W mass

=> good separation between singlet and octet W

singlet or octet?

- test the sensitivity to color flow in top pair events by verifying that the hadronic W boson is measured to be a color singlet
- apart from standard MC Madgraph+Pythia events with color octet W boson used
- fraction f_{singlet} of events with light quark jets from color singlet extracted
- best sensitivity in the central detector region when both light jets are close to each other and their invariant mass is about the W mass

=> good separation between singlet and octet W

 fraction of events with singlet W boson extracted from 728 lepton+jets candidate events (~90% purity):

 $f_{singlet} = 0.56 \pm 0.38(stat+syst) \pm 0.19$ (MC stat)

- expected:
 W boson octet exclusion @ 99% C.L.
- observed:
 W boson can't be excluded @ 95% C.L.

Result

- measurement still limited by statistics
- In the dominant systematic uncertainty due to
 - singlet/octet MC shapes : ± 0.18
 - detector inhomogeneity : ± 0.10
 - impact of signal modeling small
- All details can be found in PRD 83,092002 (2011)

Increased D0 data set offers a large variety of new measurements using top quark events

Summary

- If for the first time a matrix element based approach could exclude uncorrelated top quarks spins at 97.7% C.L.
- many analysis like the W helicity
 measurement start to be limited by systematic uncertainties
- Interesting tools for future searches of new physics like the color flow tested top quark events for the first time

BACK UP

- Iepton+jets:
 - HITFIT
 - I cos theta*I for hadronically W boson as not clear which one down type
- dilepton:
 - matrix weighting
 - average all solutions
- ♦ V+A (f+=0.3 f0=0.7) and V-A (f_=0.3,f0=0.7)
- f_ from unitarity
- binned maximum likelihood fit
- W had and W lep separately but same level of background

- verified that the jet pull is well described by Monte
 Carlo in a clean sample of (W → lv)+2 jets events
- check degradation of jet pull from pure MC truth information to full detector simulation
 - calorimeter granularity
 - energy threshold
 - noise and pile-up
- account for the inhomgeneity of the detector
- checking influence of jet splitting and merging

Systematic Uncertainties (Spin)

Source	+SD	-SD
Muon identification	0.01	-0.01
Electron identification and smearing	0.01	-0.01
PDF	0.02	-0.01
Top Mass	0.01	-0.01
Triggers	0.02	-0.02
Opposite charge requirement	0.00	-0.00
Jet energy scale	0.01	-0.01
Jet reconstruction and identification	0.06	-0.06
Normalization	0.02	-0.02
Monte Carlo statistics	0.02	-0.02
Instrumental background	0.00	-0.00
Background Model for Spin	0.03	-0.04
Luminosity	0.03	-0.03
Other	0.01	-0.01
Template statistics for template fits	0.07	-0.07
Total systematic uncertainty	0.11	-0.11
Statistical uncertainty	0.38	-0.40

_		
Source	+1SD	-1SD
Muon identification	0.01	-0.01
Electron identification and smearing	0.02	-0.02
PDF	0.06	-0.05
m_t	0.04	-0.06
Triggers	0.02	-0.02
Opposite charge selection	0.01	-0.01
Jet energy scale	0.01	-0.04
Jet reconstruction and identification	0.02	-0.06
Background normalization	0.07	-0.08
MC statistics	0.03	-0.03
Instrumental background	0.01	-0.01
Integrated luminosity	0.04	-0.04
Other	0.02	-0.02
MC statistics for template fits	0.10	-0.10
Total systematic uncertainty	0.15	-0.18
Statistical uncertainty	0.33	-0.35

EPS 2011 – Alexander Grohsjean

Source	Uncertainty (f_+)	Uncertainty (f_0)
Jet energy scale	0.007	0.009
Jet energy resolution	0.004	0.009
Top mass	0.011	0.009
Template statistics	0.012	0.023
ISR/FSR in $t\bar{t}$	0.003	0.024
NLO effects in $t\bar{t}$	0.017	0.015
$t\bar{t}$ showering model	0.013	0.001
color reconnection in $t\bar{t}$	0.002	0017
Total $t\bar{t}$ model	0.022	0.033
Background model	0.006	0.017
Heavy flavor fraction	0.011	0.026
b fragmentation	0.000	0.001
Jet ID	0.004	0.004
pdf	0.002	0.007
Analysis consistency	0.004	0.006
Muon ID	0.003	0.021
Muon trigger	0.004	0.020
Total	0.032	0.061

Source	$+1\sigma$	-1σ
Singlet/octet MC shapes	0.188	-0.188
Jet pull reconstruction	0.100	-0.093
Jet energy resolution	0.033	-0.013
Vertex confirmation	0.028	-0.029
PYTHIA tunes	0.023	-0.025
Jet energy scale	0.024	-0.009
Jet reconstruction and identification	0.017	-0.017
$t\bar{t} \bmod ling$	0.014	-0.033
Event statistics for matrix method	0.009	-0.010
Other Monte Carlo statistics	0.009	-0.007
Multijet background	0.006	-0.007
Total systematic	0.222	-0.218

Not the Top Quark

Ceci n'est pas un quark top.

