

Measurements of $|V_{ub}|$ and $B \rightarrow D^{(*)} \tau \nu_{\tau}$ at BaBar

Manuel Franco Sevillaon behalf of the BaBar collaborationSLAC, Stanford University

<u>21st of July 2011</u> Europhysics Conference on High Energy Physics Grenoble, France

 $\sim |V_{ub}|$ important input to the SM

Manuel Franco Sevilla

 $|V_{ub}|$ and $B \to D^{(*)} \tau \nu$ at BaBar

 $\sim |V_{ub}|$ important **input** to the **SM**

 $\Gamma_{B \to X_u \ell \nu} \propto |V_{ub}|^2 \times F_{had}^2(q^2, M_X, ...)$

∼ Complementary measurements

- ∞ Inclusive (reconstruct only lepton)
 - \rightsquigarrow High $X_c\ell\nu$ background \rightarrow Phase space restricted
 - \sim Non-perturbative Shape function from QCD
- ∞ Exclusive (reconstruct final decay)
 - ✤ Cleaner, lower statistics
 - ✤ Form factors from QCD

Wubl status

 $\sim |V_{ub}|$ important **input** to the **SM**

 $\Gamma_{B \to X_u \ell \nu} \propto |V_{ub}|^2 \times F_{had}^2(q^2, M_X, ...)$

∞ Complementary measurements

- ∞ Inclusive (reconstruct only lepton)
 - \rightsquigarrow High $X_c\ell\nu$ background \rightarrow Phase space restricted
 - \sim Non-perturbative Shape function from QCD
- ∞ Exclusive (reconstruct final decay)
 - ✤ Cleaner, lower statistics
 - ✤ Form factors from QCD

- ∼ Currently, **tension** between
 - ∞ <u>Inclusive</u>
 - $|V_{ub}| = (4.27 \pm 0.38) \times 10^{-3}$
 - ∞ <u>Exclusive</u>

 $|V_{ub}| = (3.38 \pm 0.36) \times 10^{-3}$

PDG 2010

Manuel Franco Sevilla

 $|V_{ub}|$ and $B \to D^{(*)} \tau \nu$ at BaBar

Inclusive Wub

To be submitted to Phys. Rev. D

$\frac{\text{Kinematic variables}}{q^2 = (P_\ell + P_\nu)^2}$ $M_X^2 = P_X^2 = E_X^2 - p_X^2$ $MM^2 = (P_{e^+e^-} - P_{B_{\text{tag}}} - P_X - P_\ell)^2$

- ∞ Hadronic <u>B_{tag}</u> (ε = 0.3-0.5%) + <u>e/μ</u>
- **~ Combinatorial** background **subtracted**
- **~ X_c***lv* background **reduced**
 - $\sim D^* \ell \nu, K_S, K^{\pm}$ vetoes
- $\sim MM^2 < 0.5 \ {\rm GeV}^2$
- $\sim X_c \ell v$ bkg. corrected in signal depleted sample
 - \sim Vetoes reversed

Inclusive Wub

To be submitted to Phys. Rev. D • Yields determined by fits to 7 phase space regions • X_u*l*v and X_c*l*v fitted • Most precise result • 2D: $q^2 - M_X$ • $p^*_l > 1 \text{ GeV}$ • $\chi^2/\text{ndof} = 31.0/29$

Inclusive Wub

Manuel Franco Sevilla

Manuel Franco Sevilla

Candidates

Exclusive $|V_{ub}|$: $B \rightarrow \pi \ell \nu$

Fits using BGL
expansion with kmax=2 $f_+(q^2) = \frac{1}{\mathcal{P}(q^2)\phi(q^2, q_0^2)} \sum_{k=0}^{k_{max}} a_k(q_0^2) [z(q^2, q_0^2)]^k \frac{\text{Boyd, Grinstein, Lebed}}{PRL 74, 4603 (1995)}$ Fits provided by
Jochen DingfelderManuel Franco Sevilla $|V_{ub}|$ and $B \to D^{(*)} \tau \nu$ at BaBarSlide 6

Exclusive $|V_{ub}|$: $B \rightarrow \pi \ell \nu$

Fits using BGL expansion with k_{max}=2 $f_+(q^2) = \frac{1}{\mathcal{P}(q^2)\phi(q^2, q_0^2)} \sum_{k=0}^{k_{max}} a_k(q_0^2) [z(q^2, q_0^2)]^k \frac{\text{Boyd, Grinstein, Lebed}}{PRL 74, 4603 (1995)}$ Fits provided by Jochen Dingfelder

Manuel Franco Sevilla

 $|V_{ub}|$ and $B \to D^{(*)} \tau \nu$ at BaBar

Manuel Franco Sevilla

 $|V_{ub}|$ and $B \to D^{(*)} \tau \nu$ at BaBar

Measurement of $B \to D au u_{ au}$ and $B \to D^* au u_{ au}$

Preliminary results

Motivation

- ✤ Decays sensitive to charged Higgs mediation
 - ∞ At tree level
 - \rightsquigarrow Coupling proportional to m_τ

∞ We measure the ratios **R(D)** and **R(D^{*})** directly

$$R(D^{(*)}) = \frac{\mathcal{B}\left(B \to D^{(*)}\tau\nu_{\tau}\right)}{\mathcal{B}\left(B \to D^{(*)}\ell\nu_{\tau}\right)}$$

~ Several theoretical and experimental uncertainties cancel

Motivation

- ✤ Decays sensitive to charged Higgs mediation
 - ∞ At tree level
 - \rightsquigarrow Coupling proportional to m_τ

 \sim We measure the ratios **R(D)** and **R(D*)** directly

$$R(D^{(*)}) = \frac{\mathcal{B}\left(B \to D^{(*)}\tau\nu_{\tau}\right)}{\mathcal{B}\left(B \to D^{(*)}\ell\nu_{\tau}\right)}$$

~ Several theoretical and experimental uncertainties cancel

SM predictions

- $\sim R(D) = 0.31 \pm 0.02$ $\frac{\text{Nierste, Trine, Westhoff (2008)}}{\text{Phys. Rev. D78 015066}}$
- $\sim R(D^*) = 0.25 \pm 0.02$
- ∼ Charged Higgs enhances or decreases $R(D^{(*)})$, depending on tanβ/m_H
 - \sim Current measurements are ${\sim}1\sigma$ high
- \sim **D**τν measured with **3.8**σ, **D**^{*}τν with **8.1**σ

Manuel Franco Sevilla

∞ Improved <u>B-tagging</u>

- ∞ Efficiency 2x previous analysis
- ∾ <u>**D**(*) meson</u>: D⁰, D^{*0}, D⁺, D^{*+}
- $\sim \underline{e \text{ or } \mu}$ (improved PID)

- $\sim q^2 = m_w^2 > 4 \text{ GeV}^2$
- **∞** Boosted Decision Tree (BDT)

 \rightsquigarrow Backgrounds: combinatorial and $B {\rightarrow} D^{**} \ell v$

$\sim 4 D^{(*)} \pi^0 \ell v$ samples

- \sim Because $B \rightarrow D^{**} \ell v$ has large uncertainties
- ∞ Same selection as signal sample but
 - \sim Added π⁰: captures D^{**}→D^(*)π⁰ decays

 $\sim q^2 = m_w^2 > 4 \text{ GeV}^2$

∞ Boosted Decision Tree (BDT)

 \rightsquigarrow Backgrounds: combinatorial and $B {\rightarrow} D^{**} \ell v$

Manuel Franco Sevilla

Fit structure

MC Simulation

Manuel Franco Sevilla

 $|V_{ub}|$ and $B \to D^{(*)} \tau \nu$ at BaBar

Fit structure

∞ Unbinned ML fit ∞ 2D: $m_{miss}^2 - p_{\ell}^*$ ∞ 4 Signal channels ∞ D⁰, D^{*0}, D⁺, D^{*+} ∞ 4 D^(*)π⁰ℓv channels

MC Simulation

Manuel Franco Sevilla

 $|V_{ub}|$ and $B \to D^{(*)} \tau \nu$ at BaBar

Fit structure

∾ Unbinned ML fit ∾ 2D: $m_{miss}^2 - p_{\ell}^*$ ∾ 4 Signal channels ∾ D⁰, D^{*0}, D⁺, D^{*+} ∾ 4 D^(*)π⁰ℓv channels

 $\sim \frac{\text{Free parameters}}{4 D^{(*)} \tau v}$ $\sim 4 D^{(*)} \ell v$ $\sim 4 D^{(*)} \ell v$ $\sim 4 D^{**} \ell v$

∞ <u>Fixed yields</u> (yellow)

- **∞** Charge crossfeed
- **∞ B combinatorial**
- **∞** Continuum

MC Simulation

Very good fit
R(D*) consistent

Manuel Franco Sevilla

 $|V_{ub}|$ and $B \to D^{(*)} \tau \nu$ at BaBar

 $|V_{ub}|$ and $B \to D^{(*)} \tau \nu$ at BaBar

Manuel Franco Sevilla

Fit results: D⁰ and D⁺

~ First **5σ observation**

•• Overestimation for

- $m^2_{miss} > 5 \text{ GeV}^2$
 - ∞ Dominated by **fixed Bkg.**

Manuel Franco Sevilla

Fit results: D⁰ and D⁺

 $|V_{ub}|$ and $B \to D^{(*)} \tau \nu$ at BaBar

Manuel Franco Sevilla

Systematics: D** lv

∞ **D**^{**}ℓv fitted in D^(*)π⁰ℓv samples

∞ Peaks are well described

- \sim There might be an excess at $1 \leq m^2_{miss} \leq 2 \ GeV^2$
- \sim 3-body decays of D^{**} included as a systematic uncertainty

∞ Currently, **variation of BDT cut dominates**

Manuel Franco Sevilla

 $|V_{ub}|$ and $B \to D^{(*)} \tau \nu$ at BaBar

∞ Currently, variation of BDT cut dominates

∼ Tight BDT cut: 50% nominal sample

∞ Currently, variation of BDT cut dominates

- **∼ Tight BDT cut**: 50% nominal sample
- **∼ Loose BDT cut**: 200% nominal sample

Manuel Franco Sevilla

 $|V_{ub}|$ and $B \to D^{(*)} \tau \nu$ at BaBar

 $D^*\tau\nu$

 $D\tau v$

Dlv

--Bkg.

D*lv

 D^{**lv}

~ Currently, variation of BDT cut dominates

- **∼ Tight BDT cut**: 50% nominal sample
- **∼ Loose BDT cut**: 200% nominal sample
- $\sim R(D^{(*)})$ change (due to statistical and systematic sources)
 - → Assigned half of the maximum variation (9.5% on R(D), 6.5% on R(D^{*}))

Manuel Franco Sevilla

Mode	$N_{ m sig}$	$N_{ m norm}$	$\mathcal{R}(D^{(*)})$	$\mathcal{B}(B \to D^{(*)} \tau \nu) (\%)$	$\Sigma_{\rm tot} (\Sigma_{\rm stat})$
$D^0 au^- \overline{ u}_ au$	226 ± 39	1433 ± 46	$0.422 \pm 0.074 \pm 0.059$	$0.96 \pm 0.17 \pm 0.14$	5.0(6.2)
$D^{*0}\tau^-\overline{\nu}_{\tau}$	511 ± 48	6839 ± 90	$0.314 \pm 0.030 \pm 0.028$	$1.73 \pm 0.17 \pm 0.18$	8.9(11.9)
$D^+ \tau^- \overline{\nu}_{\tau}$	139 ± 21	704 ± 29	$0.513 \pm 0.081 \pm 0.067$	$1.08 \pm 0.19 \pm 0.15$	6.0(7.5)
$D^{*+}\tau^{-}\overline{\nu}_{\tau}$	220 ± 23	2802 ± 56	$0.356 \pm 0.038 \pm 0.032$	$1.82 \pm 0.19 \pm 0.17$	9.5(12.1)
$D\tau^-\overline{\nu}_{\tau}$	368 ± 42	2140 ± 54	$0.456 \pm 0.053 \pm 0.056$	$1.04 \pm 0.12 \pm 0.14$	6.9(9.6)
$D^* \tau^- \overline{\nu}_{\tau}$	730 ± 50	9639 ± 107	$0.325 \pm 0.023 \pm 0.027$	$1.79 \pm 0.13 \pm 0.17$	11.3(17.1)

Last two rows: Isospin constrained fit

Systematics still preliminary

- **~ 5σ** in all channels
- $\sim 1.8\sigma$ excess over SM
 - \sim Result favors large tan β

Mode	$N_{ m sig}$	$N_{ m norm}$	$\mathcal{R}(D^{(*)})$	$\mathcal{B}(B \to D^{(*)} \tau \nu) (\%)$	$\Sigma_{\rm tot} \ (\Sigma_{\rm stat})$
$D^0 \tau^- \overline{\nu}_{\tau}$	226 ± 39	1433 ± 46	$0.422 \pm 0.074 \pm 0.059$	$0.96 \pm 0.17 \pm 0.14$	5.0(6.2)
$D^{*0}\tau^-\overline{\nu}_{\tau}$	511 ± 48	6839 ± 90	$0.314 \pm 0.030 \pm 0.028$	$1.73 \pm 0.17 \pm 0.18$	8.9(11.9)
$D^+ \tau^- \overline{\nu}_{\tau}$	139 ± 21	704 ± 29	$0.513 \pm 0.081 \pm 0.067$	$1.08 \pm 0.19 \pm 0.15$	6.0(7.5)
$D^{*+}\tau^{-}\overline{\nu}_{\tau}$	220 ± 23	2802 ± 56	$0.356 \pm 0.038 \pm 0.032$	$1.82 \pm 0.19 \pm 0.17$	9.5(12.1)
$D\tau^-\overline{\nu}_{\tau}$	368 ± 42	2140 ± 54	$0.456 \pm 0.053 \pm 0.056$	$1.04 \pm 0.12 \pm 0.14$	6.9(9.6)
$D^* \tau^- \overline{\nu}_{\tau}$	730 ± 50	9639 ± 107	$0.325 \pm 0.023 \pm 0.027$	$1.79 \pm 0.13 \pm 0.17$	11.3(17.1)

Last two rows: Isospin constrained fit

 \sim Final $|V_{ub}|$ results at BaBar

- ∼ Inclusive measurement $|V_{ub}| = (4.31 \pm 0.25 \pm 0.16) \times 10^{-3}$
- ∼ Combined exclusive measurements $|V_{ub}| = (3.13 \pm 0.14 \pm 0.27) \times 10^{-3}$

∞ Inclusive Vs Exclusive discrepancy persists

$\sim B \rightarrow D\tau v$ and $B \rightarrow D^* \tau v$ measurements improved

- **∞** Uncertainty down almost a factor of 2
- $\sim D^0 \tau v$ and $D^+ \tau v$ observed
- \sim 1.8 σ excess over SM

Manuel Franco Sevilla

 $|V_{ub}|$ and $B \to D^{(*)} \tau \nu$ at BaBar

Average does not

Motivation

- \sim Alternative to $B^-
 ightarrow au^- \overline{
 u}_ au$
 - $\sim \mathcal{B}(B \to D^{(*)} \tau \nu_{\tau}) \sim 50 \times \mathcal{B}(B \to \tau \nu_{\tau})$
 - $\sim V_{cb}$ uncertainty ~3.5 times smaller than V_{ub}
 - $\sim \mathcal{B}(B \to \tau \nu_{\tau})$ depends on non-perturbative f_B ~ 30% uncertainty
 - $\sim \mathcal{B}(B \to D^{(*)} \tau \nu_{\tau})$ depends on 4 FF ~ as low as 10% uncertainty

Manuel Franco Sevilla

 $|V_{ub}|$ and $B \to D^{(*)} \tau \nu$ at BaBar

Current status

- \sim First observation of $B^0
 ightarrow D^{*-} au^+
 u_ au$ by Belle
 - ∞ 60 ± 12 events, 5.2σ significance
 - ∞ PRL 99, 191807 (2007)
- ∼ Latest measurements

	$\begin{array}{c} BABAR, 2008 \\ \hline 232 M B\overline{B} \text{ pairs} \end{array}$		$\begin{array}{c} \text{Belle, 2009} \\ \hline 657\text{M }B\overline{B} \text{ pairs} \end{array}$		$\begin{array}{c} \text{Belle, 2010} \\ \hline 657\text{M }B\overline{B} \text{ pairs} \end{array}$	
Mode	Events	Significance	Events	Significance	Events	Significance
$B^- \to D^0 \tau^- \overline{\nu}_{\tau}$	35 ± 19	1.8	99 ± 26	3.8	146 ± 42	3.5
$B^- \to D^{*0} \tau^- \overline{\nu}_\tau$	99 ± 20	5.3	100 ± 22	3.9	446 ± 57	8.1
$\overline{B}{}^0 \to D^+ \tau^- \overline{\nu}_{\tau}$	23 ± 8	3.3	17 ± 8	2.6		
$\overline{B}{}^0 \to D^{*+} \tau^- \overline{\nu}_{\tau}$	16 ± 7	2.7	25 ± 7	4.7		

 $\sim B
ightarrow D au
u_{ au}$ not yet observed

PRL **100**, 021801 (2008) Hep-Ex 0910.4301 (2009) PRD **82**, 072005 (2010)

∞ This analysis updates BaBar 2008 with 471M of BB pairs

∞ Seed decay modes

∞ Branching fractions are for $B_{tag} → Seed + \pi^{\pm}/K^{\pm}$

BSem	$\mathcal{B}(10^{-5})$		
D^0	\rightarrow	$K^-\pi^+\pi^0$	72.9
	\rightarrow	$K^-\pi^+\pi^-\pi^+$	42.5
	\rightarrow	$K^{-}\pi^{+}$	20.4
	\rightarrow	$K^0_{\scriptscriptstyle S}\pi^+\pi^-$	15.7
D^+	\rightarrow	$K^-\pi^+\pi^+$	26.6
	\rightarrow	$K^0_{\scriptscriptstyle S}\pi^+\pi^0$	19.6
	\rightarrow	$K^-\pi^+\pi^+\pi^0$	17.3
	\rightarrow	$K^0_s \pi^+ \pi^+ \pi^-$	8.7
	\rightarrow	$K^0_{\scriptscriptstyle S}\pi^+$	4.2
D^{*0}	\rightarrow	$D^0\pi^0$	100.2
	\rightarrow	$D^0\gamma$	61.7
D^{*+}	\rightarrow	$D^0\pi^+$	53.3
	Γ	lotal	442.9

BSem	$\mathcal{B}(10^{-5})$		
D^0	\rightarrow	$K^{0}_{s}\pi^{+}\pi^{-}\pi^{0}$	28.3
	\rightarrow	$\pi^+\pi^-\pi^0$	7.5
	\rightarrow	$K^0_{\scriptscriptstyle S}\pi^0$	6.4
	\rightarrow	K^+K^-	2.1
	\rightarrow	$\pi^+\pi^-$	0.7
D^+	\rightarrow	$K^{+}K^{-}\pi^{+}\pi^{0}$	7.8
	\rightarrow	$K^+ K^- \pi^+$	2.8
D^{*0}	\rightarrow	Extra D^0	48.2
D^{*+}	\rightarrow	$D^+\pi^0$	27.5
	\rightarrow	Extra D^0	32.6
D_s^+	\rightarrow	$\phi \pi^+$	0.2
	\rightarrow	$K^0_S K^+$	0.1
D_{s}^{*+}	\rightarrow	$D_s^+\gamma$	0.3
J/ψ	\rightarrow	e^+e^-	6.3
	\rightarrow	$\mu^+\mu^-$	6.3
	177.0		

Manuel Franco Sevilla

Fit PDFs

∞ 56 PDFs taken from simulation

Server we use non-parametric Gaussian Kernel estimators (KEYS)

$$\hat{p}(X;x_i) = \frac{1}{nw} \sum_{i=1}^n K\left(\frac{X-x_i}{w}\right)$$

~ Probability Density Functions taken from simulation

- **∞ 2D KEYS functions**
 - Cross-validation to choose smoothing
 - ✤ 4 KEYS functions per PDF describing different regions

Manuel Franco Sevilla

 $|V_{ub}|$ and $B
ightarrow D^{(*)} au
u$ at BaBar

~ Probability Density Functions taken from simulation

- **∞ 2D KEYS functions**
 - Cross-validation to choose smoothing
 - ◆ 4 KEYS functions per PDF describing different regions

Manuel Franco Sevilla

 $|V_{ub}|$ and $B
ightarrow D^{(*)} au
u$ at BaBar

- Normalization (D^(*) lv) well fitted
- Solution \sim Yields agree with expectations \sim After q² ≤ 4 GeV² correction

Manuel Franco Sevilla

 $|V_{ub}|$ and $B
ightarrow D^{(*)} au
u$ at BaBar