LHC: Machine Status and Prospects for the short, medium and long term.

Grenoble,

France

Tuesday 26th July 2011

Steve Myers (for the LHC team and collaborators from around the world)

Topics

- LHC progress in 2011
- Prospects in the Short term (2011-2012)
- Mid Term Prospects (2014-2021)

• Long Term Prospects (2022--....)

Topics

- LHC progress in first half of 2011
- Prospects in the Short term (2011—2012)
- Mid Term Prospects (2014-2021)

Long Term Prospects (2022--....)

The 3 periods

1.Physics re-established with 75ns and increasing the number of bunches,

2.Intermediate energy run at 1.38 TeV/beam + Scrubbing Run

3.Start of going by steps towards 900b + TS + (MD)

Intermediate

energy run

12

11

14

Estimated Peak and Integrated Luminosity

- Baseline is 2E32 Peak and 1fb-1 (integrated)
- But following 2010, we are confident we will do better

β* =	1.5m	

days	H.F	Comm with	Fills with	kb	Nb e11	ε μm	ξ/IP	L Hz/cm ²	Stored energy MJ	L Int fb ⁻¹ 4 TeV	L Int fb ⁻¹ 3.5 TeV
160	0.3	150 ns	150 ns	368	1.2	2.5	0.006	~5.2e32	~30	~2.1	~1.9
135	0.2	75 ns	75 ns	936	1.2	2.5	0.006	~1.3e33	~75	~3	~2.7
						2	0.007	~1.6e33		~3.8	~3.3
						1.8	0.008	~1.8e33		~4.2	~3.7
125	0.15	50 ns	50 ns	1404	1.2	2.5	0.006	~2e33	~110	~3.2	~2.8

Possible integrated Luminosity of 2-3 fb-1

First Record Fill of 2011 (on March 23)

Physics re-established with 75ns and increasing the number of bunches,

3rd Period: Goal to increase the number of bunches to 900

Issues encountered with Higher Intensities

- Requires much finer control of the beam parameters
 - Chromaticity, gain of feedback and use of Landau octupoles
 - Injection quality
- Many more UFOs: not yet serious

LHC precision front

• absolute luminosity normalization

15th May 2011

- low, well understood backgrounds
- precision optics for ATLAS-ALFA and TOTEM

precise measurement of the luminous region + beam intensity --> absolute luminosity and cross section calibration

currently ~ 3.5 % level precision

21 May: 912 bunches at 3.5TeV

LHC Beam 1	LHC Beam 2		LHC Intensities History		
			1E14 - Legend Beam 1 Beam 2		
Energy [GeV/c] 3500	Energy [GeV/c]	3500	8E13		
FBCT 1.09E14	FBCT	1.09E14	6E13		
Number of Bunches 912	Number of Bunches	912	4E13		
Energy [MJ] 61.1	Energy [MJ]	60.9	2E13		
			0E0 19:20 19:30 19:40 19:50 20:00 20:10		

Sunday morning May 22: 1.1x10³³cm⁻²s⁻¹

Expected integrated luminosity for LHCb in 2011

Introduced <u>luminosity leveling</u> for LHCb \rightarrow can run at optimal μ and L_{max}

→ Since end of May running at constant $L \sim 3 \cdot 10^{32}$ cm⁻²s⁻¹ with $\mu \sim 1.5$

Continue to 1380 Bunches

 Reached 1380 (max possible with 50ns) on 28 June fill 1901

Topics

• LHC progress in 2011

- Prospects in the Short term (2nd half 2011)
- Mid Term Prospects (2014-2021)

Long Term Prospects (2022--....)

Schedule: 2nd Half 2011

Injectors - proton physics

Special runs (TOTEM etc.) to be scheduled

Mid Year performance Review "mini-Chamonix" (July 15)

The workshop will examine the possible performance improvement options available during the rest of the LHC's 2011 proton run. It will also consider the experiments' requirements and potential limitations from hardware and beam related phenomena. The principle aim to arrive at a strategy for maximizing the delivered luminosity by the end of the year. The results from, and plans for, machine development will be considered where the knowledge gained might impact the above goal.

Discussion

Luminosity comparisons are wrt 1380 bunch operation with 1.1E11ppb, emittance 2.7um, beta* = 1.5, Lumi = 1.2E33

Parameter and Criteria	adiabatic?	Estimated Max Lumi Improvement	Lost Time for physics	Risk/ Reversibility	Pile-up	Cumulative Improvement	Cumulative Improvement
		Factor	(days)			factor (50ns)	factor (25ns)
ppb	yes	2	0	0	higher	Yes	No
emittance	yes	1.35	0	0	higher	Yes	No
beta*	No	1.5	3	>0	higher	Yes	Yes
25ns	No	1.9	10	>0	same	No	Yes
		_		Luminosity Fa	actor	4.1	2.9
$I = \frac{n_b \cdot N_b}{n_b \cdot N_b}$	$bunch1 \cdot N_b$	<u>unch2</u> $\cdot f_{rev}$. R(d)	$\beta < \sigma$	Pile Up		28	10
L —	$4\pi\cdot\beta^{*}\cdot$	\mathcal{E}_n	(p, c_n, o_s)	Estimated Re Integrated Lu	lative minosity	307	185
				<mark>Relative</mark> Integ Luminosity if	grated we do	90	
July 26, 2	011	S	. Myers, HEP20	nothing			17

Conclusion

- Continue with 50ns
 - Operate with minimum emittance (2um)
 - Adiabatically increase the bunch intensity (max 1.55^e11)
 - ? Reduce beta* to 1m (LATER after next Technical Stop)

Discussion

Luminosity comparisons are wrt 1380 bunch operation with 1.1E11ppb, emittance 2.7um, beta* = 1.5, Lumi = 1.2E33

Parameter	adiabatic?	Estimated Max	Lost Time for	Risk/	Pile-up	Available	Available
and Criteria		Factor	pnysics (days)	Reversibility		factor (50ns)	factor (25ns)
ppb	yes	2	0	0	higher	Yes	No
emittance	yes	1.35	0	0	higher	Yes	No
beta*	No	1	3	>0	higher	Yes	Yes
25ns	No	1.9	10	>0	same	No	Yes
				Luminosity Fa	actor	2.7	1.9
$n_b \cdot N_b$	unch $1 \cdot N_b$	unch ₂ · f_{rev} $p(d)$		Pile Up		19	7
_ =	$4\pi\cdot\beta^{*}\cdot$	\mathcal{E}_n · $\mathcal{N}(\varphi,$	$(\rho, \varepsilon_n, \sigma_s)$	Estimated Re Integrated Lu	<mark>lative</mark> minosity	209	124
				Relative Integ Luminosity if	grated we do	90	
July 26, 2	011	S	. Myers, HEP20	1 1, Grenoble			19

Since mini Chamonix

July 26, 2011

Up-to-Date Performance Plots

Peak Luminosity

Best Fill

July 26, 2015

Daily Integrated Luminosity (22/7)

Weekly Integrated Luminosity

Evolution of Peak Performances to date

25th July 2011

Peak Performances								
Fill	Date	Bunch	Number	Peak	Total Number of			
Number		Spacing	of	Luminosity	protons per			
			Bunches	$(10^{33} \text{ cm}^{-2} \text{ s}^{-1})$	beam (10 ¹⁴)			
1635	18 March 2011	75	32	0.03	0.04			
1637	19 March 2011	75	64	0.06	0.07			
1644	22 March 2011	75	136	0.17	0.16			
1645	22 March 2011	75	200	0.25	0.24			
1712	15 April 2011	50	228	0.24	0.29			
1716	16 April 2011	50	336	0.35	0.42			
1739	26 April 2011	50	480	0.51	0.58			
1749	30 April 2011	50	624	0.72	0.76			
1755	02 May 2011	50	768	0.83	0.93			
1809	27 May 2011	50	912	1.10	1.15			
1815	29 May 2011	50	1092	1.27	1.33			
1901	27 June 2011	50	1236	1.25	1.64			
1970	23 July 2011	50	1380	1.75	1.65			

Records as of July 25

 1.75×10^{33} Peak Stable Luminosity Delivered 11/07/23, 20:31 Fill 1970 Maximum Luminosity Delivered in one fill 62.85 pb⁻¹ Fill 1900 11/06/26, 22:08 62.85 pb⁻¹ Maximum Luminosity Delivered in one day Monday 27 June, 2011 242.32 pb⁻¹ Maximum Luminosity Delivered in 7 days Wednesday 08 June, 2011 - Tuesday 14 June, 2011 Maximum Colliding Bunches Fill 1956 11/07/18, 08:00 1331 Maximum Peak Events per Bunch Crossing 14.01 Fill 1732 11/04/23, 05:47 Maximum Average Events per Bunch Crossing 8.93 Fill 1644 11/03/22, 02:20 Longest Time in Stable Beams for one fill 19.2 hours Fill 1900 11/06/27, 01:09 Longest Time in Stable Beams for one day 19.9 hours (82.9%) Monday 27 June, 2011 93.0 hours (55.4%) Thursday 21 April, 2011 - Wednesday 27 April, 2011 Longest Time in Stable Beams for 7 days Fastest Turnaround to Stable Beams 2.4 hours Fill 1718 11/04/16, 22:56

Integrated Luminosity (25/7)

Some Concerns with High Intensity

Date	Mode	Fill	SB	pb ⁻¹	Cause of dump
MON 18	STABLE BEAMS	1955	6h8m	18.3	QPS trigger, trip of RQTL7.L7B1
MON 18	STABLE BEAMS	1956	17m	.4	Cryo lost S56, SEU on a thermometer at a current lead
MON 18	ADJUST	1957	0	0	Dumped by SW interlock on BLM HV channel (1.3e11/bunch)
MON 18	STABLE BEAMS	1958	21m	1.1	Loss of cryogenic conditions in Sector 34 – PLC crash
WEDS 20	STABLE BEAMS	1960	1h9m	5.2	Problem on valve on DFB in arc 8.1 Possible SEU
WEDS 20	STABLE BEAMS	1961	2h7m	8.2	QPS - blown fuse in WorldFIP repeater
THURS 21	STABLE BEAMS	1962	15h26	46.3	CMS BCM2
FRI 22	SQUEEZE	1963	0	0	QTF trip: QFB versus QPS
FRI 22	RAMP	1964	0	0	RCBXH.R1 tripped, PC changed
FRI 22	STABLE BEAMS	1966	8.56	34.6	CMS BCM2
SAT 23	STABLE BEAMS	1967	11.4	41.7	Valve controller IT.R1 – possible SEU

Date	Mode	Fill	SB	pb ⁻¹	Cause of dump
Sat 23	STABLE BEAMS	1968	46m	4.0	Electrical network glitch
Sat 23	ADJUST	1969	0	1.8e33!	Vacuum spike 4L8
Sun 24	STABLE BEAMS	1970	1h37m	9.5	Vacuum spike 4L8
Sun 24	STABLE BEAMS	1971	1h8m	6.2	Controller IT5 Possible SEU
Sun 24	STABLE BEAMS	1972	46m	4.4	Cryo – R1 24V supply Possible SEU
Sun 24	FLAT TOP	1973	-	-	QPS communication problem
Sun 24	STABLE BEAMS	1974	5h15	25.5	Electrical network glitch

7 SEUs in one week, is becoming a serious issue. Mostly luminosity dependant

Beam intensity and vacuum (4L8)

Present "Issues"

- SEUs (dependent on total intensity and luminosity)
- UFOs (not intensity dependent)
 - Not serious for the moment (at 3.5TeV/beam but...)
- HOM heating of Injection kickers, cryo, collimators.. (total intensity and bunch length dependence)
- Vacuum instabilities at very high bunch intensities (adiabatic) ? Proton losses causing heating and desorption
- Steering beams into collision (LHCb) often provoked serious reductions in beam lifetime (beam dumps)

Topics

• LHC progress in 2011

- Prospects in the Short term (2012)
 - Protons and ions

Mid Term Prospects (2014-2021)

Long Term Prospects (2022--....)
Short term (protons)

Physics data-taking until end of 2012

- 50ns or 25 ns
 - For peak luminosity, 50ns is still higher due to the better performance beams from the injectors. But...event pile-up?
 - Very high intensity operation at 50ns may need beam scrubbibng with 25ns
- beam energy
 - Following measurements of the copper stabilizers resistances during the Christmas stop, we will reevaluate the maximum energy for 2012 (Chamonix 2012)

Short term (ions)

Lead-lead for 4-5 weeks at end of 2011 with increased number of bunches and luminosity

Feasibility Test end 2011 for protons-lead (possibly 2012)

If feasible protons-lead in 2012 otherwise continue with lead-lead. Can profit from any energy increase for the protons

Topics

- LHC progress in 2011
- Prospects in the Short term (2011—2012)
- Mid Term Prospects (2014-2021)

Long Term Prospects (2022--....)

LS1 then operation around 7TeV/beam LS1

- Repair defectuous interconnects
- Consolidate all interconnects with new design
- Finish off pressure release valves (DN200)
- Bring all necessary equipment up to the level needed for 7TeV/beam
- Not necessary to install the DS collimators in IR3
- Experiments consolidation/upgrades

LHC MB circuit splice consolidation proposal

Phase III July 26, 2011 Insulation between bus bar and to ground Lorentz force clamping

New rough draft 10 year plan

Not yet approved!

Possible Luminosity Evolution: optimistic to 2012, then prudent

Shown by Lucio Rossi last Saturday Not yet validated by LMC or Directorate

Topics

- LHC progress in 2011
- Prospects in the Short term (2011—2012)
- Mid Term Prospects (2014-2021)

• Long Term Prospects (2022--....)

New rough draft 10 year plan

Not yet approved!

HL-LHC

LHeC

HE-LHC

HL-LHC

- For LHC high luminosities, the luminosity lifetime becomes comparable with the turn round time ⇒ Low efficiency
- Preliminary estimates show that the useful integrated luminosity is greater with
 - a peak luminosity of 5x10³⁴ cm⁻² s⁻¹ and a longer luminosity lifetime (by luminosity levelling)
 - than with 10³⁵ and a luminosity lifetime of a few hours
- Luminosity Levelling by
 - Beta*, crossing angle, crab cavities, and bunch length
 - ??? Off steering
- Goal 200-300fb⁻¹ per year

- New high field insertion quadrupoles
- Upgraded cryo system for IP1 and IP5
- Upgrade of the intensity in the Injector Chain (LIU)
- Crab Cavities to take advantage of the small beta*
- Single Event Upsets
 - SC links to allow power converters to be moved to surface
- Misc
 - Upgrade some correctors
 - Re-commissioning DS quads at higher gradient
 - Change of New Q5/Q4 (larger aperture), with new stronger corrector orbit, displacements of few magnets
 - Larger aperture D2

Draft Parameters HL-LHC

Parameternominal25ns50nsN1.15E+112.0E+113.7 $^{-}$ +115.6 10^{14} and 4.6 10^{14} n_b 280828081p/beambeam current [A]0.581.023.4x-ing angle [µrad]300475580beam separation [σ]101010 β^* [m]0.550.155.6 s_n [µm]3.7523.75 ε_L [eVs]2.510.0E-04bunch length [m]7.50E-0275IBS horizontal [h]80 -> 1063.7IBS longitudinal [h]61 -> 602.1Piwinski parameter0.682.5geom. reduction0.830.37beam-beam / IP3.10E-037.4 10^{34} Peak Luminosity1 10^{34} 7.4 10^{34} Events / crossing19141257			1	Results from	Injectors Up	grades
N 1.15E+11 2.0E+11 3.7 + 11 5.6 10^{14} and 4.6 10^{14} nb 2808 2808 4 p/beam beam current [A] 0.58 1.02 544 x-ing angle [µrad] 300 475 580 beam separation [σ] 10 10 10 β^* [m] 0.55 0.15 580 beam separation [σ] 0 10 10 β^* [m] 0.55 0.15 580 ϵ_n [μ m] 3.75 2 3.75 ϵ_L [eVs] 2.51 2.5 energy spread 1.00E-04 1.00E-04 bunch length [m] 7.50E-02 7 5 IBS longitudinal [h] 61 -> 60 2.5 2.5 geom. reduction 0.83 0.37 0.37 beam-beam / IP 3.10E-03 9.9E-03 3.9E-03 Peak Luminosity 110 ³⁴ 7.4 10 ³⁴ 6.8 10 ³⁴ (Leveled to 5 10 ³⁴ cm ⁻² 95 141 257 95	Parameter	nominal	25ns 🖌 5	ons 🖌		
n_b 280828081p/beambeam current [A]0.581.0254x-ing angle [µrad]300475580beam separation [σ]101010 β^* [m]0.550.150.15 ε_n [µm]3.7523.75 ε_L [eVs]2.510.0E-04bunch length [m]7.50E-0277.50E-02IBS horizontal [h]80 -> 1063.773.75IBS longitudinal [h]61 -> 602.52.5Piwinski parameter0.682.52.5geom. reduction0.830.370.37beam-beam / IP3.10E-037.4 10346.8 1034Events / crossing19141257951	Ν	1.15E+11	2.0E+11	3.′ ~+11	5.6 10 ¹⁴ and 4	4.6 10 ¹⁴
beam current [A] 0.58 1.02 54 x-ing angle [μ rad] 300 475 580 beam separation [σ] 10 10 10 β^* [m] 0.55 0.15 0.15 s_n [μ m] 3.75 2 3.75 s_L [eVs] 2.51 2.5 energy spread 1.00E-04 1.0 ^r 2 1.00E-04 bunch length [m] 7.50E-02 7 7 7.50E-02 IBS horizontal [h] 80 -> 106 37 IBS longitudinal [h] 61 -> 60 21 21 Piwinski parameter 0.68 2.5 2.5 geom. reduction 0.83 0.37 0.37 beam-beam / IP 3.10E-03 Peak Luminosity 1 10 ³⁴ 7.4 10 ³⁴ 6.8 10 ³⁴ (Leveled to 5 10 ³⁴ cm ⁻²	n _b	2808	2808	1	p/bear	n
x-ing angle [μ rad]300475580beam separation [σ]101010 β^* [m]0.550.150.15 ε_n [μ m]3.7523.75 ε_L [eVs]2.5102.5energy spread1.00E-041.00F-04bunch length [m]7.50E-0277IBS horizontal [h]80 -> 106337IBS longitudinal [h]61 -> 602.52.5Piwinski parameter0.682.52.5geom. reduction0.830.370.37beam-beam / IP3.10E-037.4 10346.8 1034Fvents / crossing1914125795	beam current [A]	0.58	1.02	0 34		
beam separation $[\sigma]$ 10 10 10 β^* [m] 0.55 0.15 0.15 $\epsilon_n [\mu m]$ 3.75 2 $\delta_n [\pi m]$ 3.10E-02 7 $\delta_n [\pi m]$ 3.10E-03 3.9E-03 3.9E-03 7.4 10 ³⁴ 6.8 10 ³⁴ (Leveled to 5 10 ³⁴ cm ⁻²)	x-ing angle [µrad]	300	475	\$ 580		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	beam separation $[\sigma]$	10	10	10		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	β* [m]	0.55	0.15	0.15		
ε_L [eVs] 2.51 2.5 energy spread 1.00E-04 1.0r 1.00E-04 bunch length [m] 7.50E-02 7 7.50E-02 IBS horizontal [h] 80 -> 106 37 IBS longitudinal [h] 61 -> 60 21 21 Piwinski parameter 0.68 2.5 2.5 geom. reduction 0.83 0.37 0.37 beam-beam / IP 3.10E-03 7.4 10 ³⁴ 6.8 10 ³⁴ (Leveled to 5 10 ³⁴ cm ⁻² Events / crossing 19 141 257 95 1	ε _n [μ m]	3.75	2 0	3.75		
energy spread $1.00E-04$ 1.07 $1.00E-04$ bunch length [m] $7.50E-02$ 7 $7.50E-02$ IBS horizontal [h] $80 -> 106$ 37 IBS longitudinal [h] $61 -> 60$ 21 21 Piwinski parameter 0.68 2.5 2.5 geom. reduction 0.83 0.37 0.37 beam-beam / IP $3.10E-03$ 7.410^{34} 6.810^{34} (Leveled to 510^{34} cm ⁻² Events / crossing 19 141 257 95 1	ε _L [eVs]	2.51		o 2.5		
bunch length [m]7.50E-0277.50E-02IBS horizontal [h] $80 -> 106$ 37 IBS longitudinal [h] $61 -> 60$ 21 Piwinski parameter 0.68 2.5 geom. reduction 0.83 0.37 beam-beam / IP $3.10E-03$ 7.410^{34} Peak Luminosity 110^{34} 7.410^{34} Events / crossing19141	energy spread	1.00E-04	1.0r 🔨 👗	1.00E-04		
IBS horizontal [h] $80 -> 106$ 37 IBS longitudinal [h] $61 -> 60$ 21 21 Piwinski parameter 0.68 2.5 2.5 geom. reduction 0.83 0.37 0.37 beam-beam / IP $3.10E-03$ $3.9E-03$ $3.9E-03$ Peak Luminosity $1 10^{34}$ $7.4 10^{34}$ $6.8 10^{34}$ (Leveled to $5 10^{34} \text{ cm}^{-2}$	bunch length [m]	7.50E-02	7 5	7.50E-02		
IBS longitudinal [h] $61 -> 60$ 21 21 Piwinski parameter 0.68 2.5 2.5 geom. reduction 0.83 0.37 0.37 beam-beam / IP $3.10E-03$ $7.4 10^{34}$ $3.9E-03$ Peak Luminosity $1 10^{34}$ $7.4 10^{34}$ $6.8 10^{34}$ (Leveled to $5 10^{34} \text{ cm}^{-2}$	IBS horizontal [h]	80 -> 106	ف الله الله	37		
Piwinski parameter 0.68 2.5 2.5 geom. reduction 0.83 0.37 0.37 beam-beam / IP 3.10E-03 .9E-03 3.9E-03 Peak Luminosity 1 10 ³⁴ 7.4 10 ³⁴ 6.8 10 ³⁴ (Leveled to 5 10 ³⁴ cm ⁻² Events / crossing 19 141 257 95 1	IBS longitudinal [h]	61 -> 60	21	21		
geom. reduction 0.83 0.37 0.37 beam-beam / IP 3.10E-03 .9E-03 3.9E-03 Peak Luminosity 1 10 ³⁴ 7.4 10 ³⁴ 6.8 10 ³⁴ (Leveled to 5 10 ³⁴ cm ⁻² Events / crossing 19 141 257 95 1	Piwinski parameter	0.68	0 2.5	2.5		
beam-beam / IP 3.10E-03 3.9E-03 3.9E-03 Peak Luminosity 1 10 ³⁴ 7.4 10 ³⁴ 6.8 10 ³⁴ (Leveled to 5 10 ³⁴ cm ⁻² Events / crossing 19 141 257 95 1	geom. reduction	0.83	0.37	0.37		
Peak Luminosity 1 10 ³⁴ 7.4 10 ³⁴ 6.8 10 ³⁴ (Leveled to 5 10 ³⁴ cm ⁻² Events / crossing 19 141 257 95 1	beam-beam / IP	3.10E-03	.9E-03	3.9E-03		1024 2 1
Events / crossing 19 141 257 95 1	Peak Luminosity	1 10 ³⁴	7.4 10 ³⁴	6.8 10 ³⁴	(Leveled to 5	$10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
	Events / crossing	19	141	257	95	190

LHeC

Design Parameters

electron beam	RR	LR	LR*
e- energy at IP[GeV]	60	60	140
luminosity [10 ³² cm ⁻² s ⁻¹]	17	10	0.44
polarization [%]	40	90	90
bunch population [10 ⁹]	26	2.0	1.6
e- bunch length [mm]	10	0.3	0.3
bunch interval [ns]	25	50	50
transv. emit. γε _{x,y} [mm]	0.58, 0.29	0.05	0.1
rms IP beam size $\sigma_{x,y}$ [μ m]	30, 16	7	7
e- IP beta funct. $\beta^*_{x,y}$ [m]	0.18, 0.10	0.12	0.14
full crossing angle [mrad]	0.93	0	0
geometric reduction H _{hg}	0.77	0.91	0.94
repetition rate [Hz]	N/A	N/A	10
beam pulse length [ms]	N/A	N/A	5
ER efficiency	N/A	94%	N/A
average current [mA]	131	6.6	5.4
tot. wall plug power[MW]	*) pu ised , but	nig h@O erg	y ERL 1@0 impos

proton beam	RR	LR	
bunch pop. [10 ¹¹]	1.7	1.7	
tr.emit.γε _{x,y} [μm]	3.75	3.75	
spot size σ _{x,y} [μm]	30, 16	7	
β* _{x,y} [m]	1.8,0.5	0.1	
bunch spacing [ns]	25	25	
"ultimate p beam"			

1.7 probably conservative

Design also for deuterons (new) and lead (exists)

RR= Ring – Ring **LR** =Linac –Ring

Ring uses 1° as baseline : L/2 Linac: clearing gap: L*2/3

sible

LHeC Tentative Time Schedule

We base our estimates for the project time line on the experience of other projects, such as (LEP, LHC and LINAC4 at CERN and the European XFEL at DESY and the PSI XFEL)

HE-LHC

First Thoughts on an Energy Upgrade

HE-LHC – LHC modifications

Very Long Term Objectives: Higher Energy LHC

Preliminary HE-LHC - parameters

	nom	HE-LHC
beam energy [TeV]	10,2	16.5
dipole field [T]	$$. M^{γ}	20
dipole coil aperture [mm]		40-45
#bunches / beam		1404
bunch population [10 ¹¹]		1.29
initial transverse normalized er		3.75 (x), 1.84 (y)
[μm]		
number of IPs contribut;	3	2
maximum total bear	0.01	0.01
IP beta function '	0.55	1.0 (x), 0.43 (y)
full crossing	285 (9.5 σ _{x,y})	175 (12 σ _{x0})
stored br	362	479
SR pc	3.6	62.3
longitu	12.9	0.98
events pe	19	76
peak lumin (* cm ⁻² s ⁻¹]	1.0	2.0
beam lifetime 🧃	46	13
integrated fuminosity over 10 My [F3-H]EP2011, Gr	eldone eldone	0.5 57

HE-LHC – main issues and R&D

- high-field 20-T dipole magnets based on Nb₃Sn, Nb₃Al, and HTS
- high-gradient quadrupole magnets for arc and IR
 - fast cycling SC magnets for 1-TeV injector
- emittance control in regime of strong SR damping and IBS
- cryogenic handling of SR heat load (first analysis; looks manageable)
 - dynamic vacuum

Summary on Future Prospects

- LHC Upgrades: 3 very interesting projects
 - 1. HL-LHC (approved) and needs LIU (approved)
 - 2. LHeC (CDR published, and will be reviewed by ECFA and CERN in October 2011)
 - 3. HE-LHC (project pre-study under way)
- Linear Colliders ILC/CLIC
- Proposal for next energy frontier project will be dependent on the physics output from the LHC until end 2012

LHC present status Summai

- Beam Intensity, peak and Integrated luminosity still g very (quite) rapidly
- Successfully implemented luminosity leveling for LHC luminosity calibration (vdM scans)

- We reached our 2011 target integrated luminosity, with ~16 weeks still to go, and will certainly produce more barring accidents
- However, progress from here on will be slower due to many simultaneous issues limiting the total intensity
- Conclusions. We are way ahead of the game, and the future is bright. But Euphoria is dangerous
- We must remain extremely vigilant with protection of the machine (100MJ of stored energy) and hope that the more old unexploded bombs in the hardware!!

Thanks to the dedication of the CERN staff and the many excellent collaborators from around the world who pulled together to make this performance possible. **BRAVO!**

LIU

Beam parameters at LHC injection [50 ns]

Beam parameters at LHC injection [50 ns]

R.G.

Beam parameters at LHC injection [25 ns]

Beam parameters at LHC injection [25 ns]

Performance optimization for the LHC

Luminosity (round beams):

$$L = \frac{n_b \cdot N_{bunch,1} \cdot N_{bunch,2} \cdot f_{rev}}{4\pi \cdot \beta^* \cdot \varepsilon_n} \cdot R(\phi, \beta^*, \varepsilon_n, \sigma_s)$$

Event pileup & e-cloud \rightarrow 1) maximize bunch brightness [N_{bunch}/ ε_n] beam-beam limit and injector complex performance \rightarrow 2) minimize beam size [β^*] (constant beam power) \rightarrow 3) maximize number of bunches (beam power limit) \rightarrow 4) compensate for 'R'

- \rightarrow reduction of long range beam-beam interactions
- → reduction of head-on beam-beam parameter
- \rightarrow reduction of the mechanical aperture
- → synchro-betatron resonances
- → reduction of instantaneous luminosity
 - → inefficient use of beam current
 - → option for L leveling!

UFOs

On average 8 UFOs/hour. Is there a conditioning effect?

2301 candidate UFOs (excluding MKI UFOs) during stable beams in fills with at least 1 hour stable beams. all UFOs: Signal RS05 > 2.10⁻⁴ Gy/s. Data scaled with 1.85 (detection efficiency from reference data)

Mini-Chamonix Workshop 2011

Energy Dependency

• Ufo amplitude: Linear dependency

of BLM signal on beam energy observed (from wire scans).

(cf. M. Sapinski at Chamonix 2011)

• **BLM Thresholds:** Arc Thresholds at 7 TeV are about a factor 5 smaller than at 3.5 TeV.

• UFO rate:

- At 450 GeV: extremely rare.
- During 1.38 TeV run: 3 UFOs in 36.5 h.
- At 3.5 TeV: 8 UFOs/h.

The number of MKI UFOs is much higher in Pt. 2 for the last few fills.

In the last physics fills many MKI UFOs with large amplitudes occurred with a high rate. No obvious change found to explain this.

Most MKI UFOs occur shortly after the last injections.

• For 2010: 113 UFOs below threshold found in logging database.

(E. Nebot)

• For 2011: Online UFO detection by UFO Buster.

Detects UFOs in BLM concentrator data (1Hz).

 5000 UFOs below threshold found so far.

Most events are much below threshold.

"threshold" = lowest threshold in standard arc cell.

The UFOs are distributed all around the machine. About 7% of all UFOs are around the MKIs.

53 candidate UFOs at MKI for Beam 2.

gray areas around IRs are excluded from UFO detection.

Mainly UFOs around MKIs

On average: 10 UFOs/hour

•679 UFOs around the MKIs caused 9 beam dumps.

Most of the UFOs around the MKIs occur before going to stable beams.

- Thursday afternoon (7th April) all powering was stopped in the LHC following the discovery of a worrying cabling problem affecting the QPS system protecting the HTS current leads.
- Followed by an extensive verification campaign.
- Lost about 2 days.

HTS quench (sc link)- what happened

- QPS tripped the RB circuit in sector 45 on Thursday around 07:00.
 First time ever quench of HTS current lead
- The HTS quenched due to a lack of cooling in the DFB
 - Faulty electronics board corrupted the temperature feedback loop
- Protection by the QPS monitoring the current leads.
 - Logging of the two HTS signals showed that only one of the two measurements was correct, the other was measuring a short circuit
- An identical fault on the redundant signal would have left the system unprotected and could lead to beyond repair damage to the DFB. No spares
- Decided to stop powering magnets
 - To validate other circuits

Vtaps standard 🔂 s vsd

om the logging

Analysis of the logging data from old ramps allowed the QPS team to verify the correctness of the signals for other 13 kA circuits

- Verification of U_RES & U_HTS on all IPQs, IPDs, ITs using dedicated powering cycles by the QPS team
 - Verification of boards A & B

Example of a healthy channel: both boards move in unison during a ramp

Verification - Friday 8th April

- In the late afternoon all high current circuits except the 600 A circuits had been checked.
 - Acceptable risk for 600 A circuits.
- All tests showed the presence of the expected signals.
- Green light for powering from TE/MPE in the evening.

Among all the high current circuits we happen to quench exactly the one circuit with a cabling problem !!

Event of 18th April

- Flashover (high voltage breakdown) on B2 MKI magnet D (first one seen by the beam) while injecting 72b
- Extensive beam losses through P8 and arc 78: result
 - Kicker interlocked off
 - Quench heaters fired on 11 magnets
 - Vacuum valves closed
 - Several very anxious hours....

Beam Dumps at > 450 GeV – I

Date	Time	State	Reason
30/05	11h08	Stable beams	QPS trigger circuit detector of RCBXH2.L1. SEU?
	15h43	Adjust	New RF interlock not masked
	20h20	Adjust	FMCM. Electrical glitch
31/05	06h22	Stable beams	UFO IR2L
	10h38	Stable beams	Communication with DFBAJ. SEU?
	22h20	Squeeze	UFO IR2L
01/06	02h10	Squeeze	QPS trigger (Quench of Q9R5 ?)
	06h53	Adjust	RF trip (radiation-induced arc detector signal?)
	09h17	Ramp	Collimator temperature
	20h37	Stable beams	Collimation crate IR5R failure (PRS)
02/06	16h58	Beam dump	EIC
	21h50	Stable beams	UFO IR8
03/06	00h28	Squeeze	Trip of RQTF.A23B2
	13h30	Stable beams	Loss of I_meas reading
	18h24	Squeeze	UFO in IR8R
	21h17	Stable beams	Trip undulator IR4.

Beam Dumps at > 450 GeV – II

Date	Time	State	Reason	
04/06	07:56	Stable beams	QPS FIP communication lost, close to IR1. S12 tripped.	
	16:19	Stable beams	Power converter fault.	
	20:20	Flat top	UFO IR2L	
05/06	00:15	Stable beams	RF trip	<
	03:48	Adjust	LHCb magnet trip	
	06:56	Stable beams	UFO IR2L	
06/06	00:31	Stable beams	QPS trigger on RQTL11.R7B1.	
	07:39	Stable beams	PC failure of RQ6L2.	
07/06	07:28	Stable beams	Bad current reading on RTQX2.R1	
08/06	09:22	Stable beams	Alice dipole trip	

26 beam dumps at > 450 GeV, only one dumped by OP.

Increase of BLM dump threshold for Q4 (MQY) at MKI's by factor 2

Important parameter for

- □ Cryogenics stability
- □ Collimator heating
- □ Injection kicker heating

□ ...

- Work ongoing to improve blow-up control during the ramp by the RF-team
 - □ Better reproducible results -> test operation with longer bunches
 - Disadvantage is possibly more debunched beam when a cavity trips, but not an issue at the moment

UFO's: 90 in 90 minutes

ile LHC Control Favorites HWC General Observation Print... WorkingSet Screenshot Active Tasks Context 1: PLS_LINE=LHC.USER.LHC 1 🚺 🔻 RBA: Ihcop Acquisition Found HEOs UFO BLM Losses RS04 [Gy/s] L... L... L... L. Losses RS05[Gy/s] Time (local) Losses RS01 [Gy/s] BLMQI.25L8.B1E10_MQ 1.03E-4 2011-04-13 14:06:... 9.05E-4 3.39E-4 BLMQI.13R3.B1I10_MQ 3.25E-5 2011-04-13 14:06:.. 3.62E-4 1.19E-4 2.53E-3 2011-04-13 14:06:. BLMQI.27L8.B2I10_MQ 6.41E-4 1.49E-3 Concentrator Acquisition 👻 BLMOL13R2.B2E10 MC 3.82E-4 2011-04-13 14:06:. 2.44E-3 1.17E-3 BLMOI.18L5.B1I10_MO 7.49E-5 2011-04-13 14:08:. 9.05E-4 2.72E-4 Settings BLMQI.26L1.B2E30_MQ 1.73E-4 6.05E-4 2011-04-13 14:11: 1.18E-3 BLMEI.05R8.B2E20_MKI.D5R8.B2 8.56E-4 2011-04-13 14:11:. 3.08E-3 2.13E-3 BLMQI.19R3.B1I10_MQ 1.48E-4 2011-04-13 14:11:. 3.17E-3 5.94E-4 2.12E-4 2011-04-13 14:12:.. 6.34E-4 3.73E-4 BLMQI.07L2.B1E10_MQM 2.18E-4 2011-04-13 14:13:.. 1.36E-3 BLMQI.18L6.B2I10_MQ 6.56E-4 BLMQI.19R3.B1I10_MQ 2.77E-4 2011-04-13 14:13:... 1.27E-3 6.56E-4 6.93E-5 BLMQI.07L1.B1I10_MQM 2011-04-13 14:14:... 1.09E-3 2.72E-4 BLMQI.29L6.B1E10_MQ 5.15E-4 2011-04-13 14:15: 7.51E-3 1.97E-3 Algorithm BLMOI.16L3.B2E10_MO 6.66E-4 2011-04-13 14:18: 4.07E-3 1.86E-3 BLMOI. 10R5. B2110 MOML 4.94E-4 2011-04-13 14:21:. 4.52E-3 1.91E-3 Optimized Algorithm 👻 BLMOI.10R8.B1I10_MOML 7.85E-4 2011-04-13 14:22: 3.98E-3 2.63E-3 Settings BLMQI.28R2.B1I10_MQ 9.33E-5 2011-04-13 14:23:. 5.43E-4 3.05E-4 BLMOI.25R8.B2E10_MO 4.41E-4 2011-04-13 14:25:. 3.08E-3 1.51E-3 Threshold for BLMs 1.0E-4 8.91E-5 2011-04-13 14:26:. 5.43E-4 2.94E-4 BLMQI.26L3.B1I10_MQ 6.22E-4 BLMQI.19R2.B2E10_MQ 2.83E-4 2011-04-13 14:27:. 1.09E-3 7.58E-4 BLMOI.09L7.B1E10_MO 2011-04-13 14:29:. 3.53E-3 1.67E-3 BLMQI.26L1.B1I10_MQ 9.05E-5 2011-04-13 14:29:... 3.00E-4 Use runnina sum: 4 -6.34E-4 BLMEI.05R8.B2E20_MKI.D5R8.B2 9.05E-5 . 2011-04-13 14:29:. 1.18E-3 3.11E-4 BLMQI.31R3.B1I10_MQ 5.24E-3 2011-04-13 14:29:. 1.23E-2 7.46E-3 BLMQI.19R3.B1I10_MQ 2.25E-4 2011-04-13 14:30:. 1.90E-3 7.81E-4 Threshold for ratio of RS2/1 0.55 3.17E-3 BLMQI.14R2.B1I10_MQ 8.06E-4 2011-04-13 14:30:. 8.78E-3 BLMQI.14L4.B2E30_MQ 5.37E-5 2011-04-13 14:31:.. 3.62E-4 1.30E-4 BLMQI.14R7.B1E10_MC 5.12E-4 2011-04-13 14:36:. 3.26E-3 1.41E-3 BLMQI.25R8.B2E10_MQ 2011-04-13 14:39:. Threshold for ratio of RS3/2 0.45 1.60E-4 1.18E-3 4.92E-4 BLMOI.25R8.B2E10_MO 1.75E-4 2011-04-13 14:41:. 9.96E-4 5.32E-4 2.26E-3 6.55E-4 BLMQI.12L4.B2E10_MQ 2011-04-13 14:43:. 1.24E-3 BLMQI.28R7.B2I10_MQ 4.51E-4 2011-04-13 14:44:.. 2.99E-3 1.43E-3 Threshold for ratio of RS4/3 0.55 BLMQI.08L3.B1I10_MQ 1.13E-3 2011-04-13 14:46:. 1.72E-2 4.33E-3 BLMQI.25R7.B1E10_MQ 1.20E-4 2011-04-13 14:47:.. 1.18E-3 4.52E-4 BLMQI.31R5.B2I10_MQ 2.67E-4 2011-04-13 14:47: 1.90E-3 9.16E-4 BLMQI.18R8.B1I10_MQ 3.96E-4 2011-04-13 14:48:. 3.17E-3 1.44E-3 Get Set BLMOI.24R8.B2E10_MO 3.01E-4 2011-04-13 14:50:.. 2.26E-3 1.05E-3 2011-04-13 14:51:...9.79E-4 BLMQI.21L6.B2I10_MQ 2.53E-4 2.72E-3 Action BLMOI.14R2.B1I10_MO 5.19E-4 .2011-04-13 14:51:... 6.06E-3 2.03E-3 autosave 📄 Remove Remove all Show data save load 14:47:47 - New RBA Token was set to CMW: RBAToken/serial=0xd7f7b4dd;authTime=2011-04-13@14:34:48;andTime=2011-04-13@22:33:48;application=AppPrincipal/name=UFO Buster, critical=false, timeout=-1;locatio...

Presently 10 per hour on average noble

3rd Period: Increasing number of bunches to 900

Issues with Machine Protection

- 1. Collimation loss of hierarchy at 450 GeV
 - Due to order in which the loss maps were performed
- 2. 72 (108/144) bunches
 - Last bunch of previous injection got kicked; low intensity and higher emittance
 - BPMs position calibration is sensitive to bunch intensity
 - Dump interlock measures local position of all bunches
- 3. HTS quench (7th April) quench of 11 sc magnets

4. Injection Kicker Flashover (18th April)

MD1

Some highlight ...

- MDs prove excellent performance potential of LHC:
 - No head-on beam-beam limit encountered with 3 times nominal brightness. Total tune shift: 0.03 with ATLAS/CMS collisions.
 - New ATS injection optics with different integer tunes tested to 3.5 TeV. Next MD test squeeze
 - Collimation system reached tighter settings with better cleaning efficiency. (results crucial for decision on "cryo collimator system)
- Operational improvements:
 - 90m optics for ALFA and TOTEM works fine.

43% of design

Beam-beam limit

50% above design

- Collided high intensity beams (1.7 E11) and small emittances (smaller than 1.5 um) in IP1 and IP5.
- In final attempt reduced vertical tune to end up below 10th order after putting beams in collision. No more blowup observed, tune shifts per IP in excess of 0.015 (with initial emittance below 1.2 um).
- No limit found for head-on beam-beam effects for the intensities investigated so far (no long range yet).

Integrated Luminosity

- Assumptions ٠
 - 90 days left
 - 50ns: 3 days of machine studies followed by 30 days linear increase from present luminosity to max luminosity
 - 25ns: 10 (3+7) days of machine studies followed by 30 days linear increase _ from zero to max luminosity

Peak Relative Luminosity (25ns)

90