

Detector R&D

Europhysics Conference on High-Energy Physics 2011

Grenoble, 26. July 2011

Roland Horisberger Paul Scherrer Institute Enormous world wide activity in particle detector R&D by:

- particle physics
- nuclear physics
- astro-particle science
- X-ray photon scattering science
- neutron scattering science
- medical/biological sciences

Almost impossible to keep overview and summarize all. June/July 2011 (TIPP2011, VERTEX2011) ~ 500 contributions. EPS-HEP2011 "Detector R&D" Session ~ 30 contributions

Please excuse personal selection based on ignorance and interest.

- Detector Performance of LHC experiments
- Improvements and Upgrades
- Challenges to Tackle
- Insights, Technologies & "driving" Developments
- Cute Ideas & Well Done

Apologies to those a) who do great work, but are not mentioned in my talk.

b) who's work is mentioned, but may not be correctly referenced.

Detector performance of LHC experiments

- Enormous growth (~10⁵) of LHC luminosity since startup
- Experiments constantly adapting
 - algorithms
 - FPGA firmware
 - DAQ software
- Problems showed up with rates !
- Low lumi periods allowed debugging
- Overall things have worked as planned !

→ great success !

- High channel segmentation of experiments has paid off (so far)
 - operational channels (typ > 98% or better) & well calibrated
- Flexibility in detector specific, low level digital data manipulation by FPGA's has been crucial to this success story. \rightarrow lesson for HL-LHC and other ambitions projects

<u>CMS</u>

- all sub-detectors in good shape
- well calibrated & aligned
- Trigger & DAQ runs ~100KHz
- Data taking efficiency ~93%

ATLAS

- work very well
- run efficiency 95.3% !

<u>General Comment</u>: remarkable agreement between Data – MC

e.g. Tile Calorimeter

<figure><figure>

<u>LHCb</u>

- Luminosity leveling \rightarrow L ~ 3.10³² cm⁻²s⁻¹
- Experiment operates well (at 50ns) with μ ~ 1.5 beyond design of μ ~ 0.6
- RICH works very well in complex events !

Remarkable little running inefficiency 1.4% due to VELO closing/opening to beam

ALICE

- Specialized on HI running but can do some things in pp
- 3 different silicon technologies
- Silicon Drift Detector unique !

Calibration / Alignment of Silicon Drift Detectors

Impact parameter at 1GeV measured δ (rq) ~ 60 μ !

ALICE

• Specialized on HI running but can do some things in pp

- 3 different silicon technologies
- Silicon Drift Detector unique !

Calibration / Alignment of Silicon Drift Detectors

Impact parameter at 1GeV measured δ (rq) ~ 60 μ !

Improvements and Upgrades

- Data taking & physics analysis demonstrates shortcomings of experiments
- Upgrade decision are often problem driven. Many collaborators can convince themselves
- When it comes to the fix them, proposals quite often diverge again.
- A few proposed upgrades with their solution are presented:

ATLAS Insertable B-Layer (IBL)

CMS Pixel Upgrade

LHCb & VELO Upgrades

Resistive MicroMega for ATLAS μ -Chambers

CMOS Pixel Sensors for STAR

ATLAS IBL Upgrade

- FE-13 gets inefficient at HL-LHC
- \bullet new FE-14 ROC in 0.13μ CMOS
- new pixel size $50\mu \times 250\mu$
- chip shows excellent behavior
- low pixel threshold ~1600 e
- very rad. tolerant
- low power (22 μ W/pixel)

Sensor options: planar n-in-n or 3D

Remarkable: planar sensor with ${\sim}200\mu$ pixel to edge

Detector R&D, R. Horisberger

CMS Pixel Upgrade

Minimal changes to get a pin-compatible system

- Improve pixel vertexing in large PU events
 → 3 layers to 4 layers !!
- Shift material budget to high η and use CO2 cooling \rightarrow smaller impact parameter & less γ conversion
- Modify ROC to operate at 2x10³⁴ efficiently
 → reduce data loss as go beyond LHC luminosities

V_{out} ~2.5V, I_{out} <2.8A

efficiciency ~80%

Changes to ROC for 2x10³⁴

- 40MHz analog ightarrow 160MHz digital
- 0.25 μ CMOS, 5Metals \rightarrow 6Metals
- increase depth of
 - data buffer 32 \rightarrow 96
 - timestamps 12 \rightarrow 24
- add readout buffer (64)
- add 8 bit ADC for pulse height
- lower pixel thresholds
- PKAM events ightarrow DAQ resync

3 layer pixel (old) with no PU <u>same performance</u> as 4 layer pixel (new) with ~40 PU

More pixel hits is essential for large number of PU events.

LHCb & Velo Upgrade

- 5fb⁻¹/year \rightarrow 50fb⁻¹/year
- open access allows simpler change
- trigger limitations 1MHz \rightarrow 40MHz
- software trigger with 20KHz output
- should deal with int. rate $\,\mu$ ~2.1

VELO Upgrade Options:

- a) Strip detector: strip pitch 30μ
- b) VELOPIX , Timepix based 55µx55µ pixel ROC, large data rates output

<u>PID Upgrade</u> (keep RICH-1 & RICH-2) HPD's with 1MHz ROC \rightarrow MAPMT's 40MHz

ATLAS μ-Chamber Upgrade

- Reduce forward muon fake rate
- several technologies considered, present:

Resistive MicroMegas

- designed for tolerating sparkes
- resistive strip parallel to readout strip

Prototype (9cmx8cm) tested with neutrons $\sim 10^{6}/cm^{2}$. Shows no sparking compared to normal MM!

Technology is cheap \rightarrow 200m²

CMOS particle sensors

Use signal from ionizing particles in CMOS bulk.

- commercial standard CMOS process --> low cost
- signal collection by diffusion only \rightarrow speed, spread
- typical signal ~ 1000 electrons on n-wells contacts
- typically few unipolar pixel transistors in p-well
- very small pixels with very low noise ~20electrons
- rolling shutter to avoid random chip internal X-talk
- well suited for high precision & low rates
- 0-suppression in CMOS periphery \rightarrow digital readout

STAR Pixel Upgrade (planned for 2014)

- 2 layers at 2.5cm / 8cm
- Mimosa 28 chip ("Ultimate") in AMS-0.35 μ CMOS

- pixel size 20.7 $\!\mu$
- chip size 20mm x 23mm
- -position resolution ${\sim}10\mu$
- 200nsec per row scan

Challenges to Tackle

<u>**HL-LHC Performance Estimates</u>** (min. $\beta^* = 15$ cm, CRAB cavities)</u>

Parameter	nominal	25ns	50ns	
Ν	1.15E+11	2.0E+11	3.3E+11	
n _b	2808	2808	1404	
Peak Luminosity	1 10 34	7.4 10 34	6.8 10 34	
Events/crossing	19	141	257	← worry !

Physics analysis with many overlapping PU events is likely to suffer from

- MET resolution
- jet energy resolution
- jet-jet separation
- Triggering problems → fast readout links are useful

Missing Transverse Energy with CMS

In CMS different methods to calculate Missing Transverse Energy (MET) :

- a) Calorimeter MET
- b) Track-corrected MET
- c) Particle flow MET (pfMET) \rightarrow best results

Missing Transverse Energy can be faked by e.g. discharges or particle hits in photo-sensors ! Was dealt with careful algorithms !

MET degradation .vs. # PU events

High Granularity Particle Flow Calorimetry

Particle Flow Calorimetry has good chance to function even in with many PU events.

Basic Particle Flow Algorithm:

- Charged energy (65% in jet) measure by tracking \rightarrow separate multiple PU-events
- Photon (25% in jet) precisely measured in ECAL
- neutrons / K_L (only 10% in jet) measured in HCAL with moderate resolution
- Have to subtract away the charged energy in observed HCAL showers
- Confusion error in separation of showers is dominant
- Need a highly segmented HCAL detector 🔶

- 38 layers with 2cm Fe (W since 2011)
- Scint. tiles with SiPM readout

depth segmentation is crucial

Insights, Technologies & "driving" Developments

Silicon sensors

(basic material properties studies by RD-50)

(U. Parzefall, U. Freiburg)

Irradiation in silicon sensors gives :

- Surface damage from Ionizing Energy Loss (IEL) \rightarrow surface charges (SiO₂)
- Crystal damage from Non-Ionizing Energy Loss (NIEL) \rightarrow energy levels in bandgap

the latter leading to leakage current, trapping centers and doping effects.

Observe the generation of universal, device doping independent

Signal charge trapping is <u>dominant</u> radiation effect at 10¹⁵n_{eq} and above !

$$\tau_{eff} (10^{15} n_{eq}) = 2ns \qquad w = v_{sat} \tau_{eff} = 200 \mu m$$

$$\tau_{eff} (10^{16} n_{eq}) = 0.2ns \qquad w = v_{sat} \tau_{eff} = 20 \mu m$$

charge collection distance

Effective doping concentration N_{eff} depends on radiation activated defects:

Depending an radii, HL-LHC experiments will expose their silicon sensors more to charged hadrons or neutrons → pixels (more hadrons) & strips (more neutrons)

- short charge collection distance
- insensitive regions for tracks passing through electrode pillars. e.g. 90^o tracks
- interleaved electrode pillars \rightarrow capacitance!
- 3D sensors show avalanche charge <u>multiplication</u> after irradiation. (seen also in planar)
 - \rightarrow non gaussian noise in electronics

Diamand Sensors

Particle detectors from Chemical Vapor Deposited (CVD) Diamond are trapping defect dominated.

Mono-crystalline diamonds show much better charge collection distances !

Mono- / Poly-crystalline Comparison

Poly-crystalline material shifted by ≈ 3.8 × 10¹⁵ p/cm² to mono-crystalline material

Running construction projects:

- ATLAS Beam Conditions Monitor
- CMS Pixel Luminosity Telescope
- ATLAS Diamond Beam Monitor

Cute Ideas & Well Done

DEPFET Vertex Detector for BELLE II

Belle II pixel vertex detector

- 2 layers at radii = 1.4, 2.2 cm
- monolithic sensor thickness $75 \mu m$
- pixel size ~50 x 50 μm^2
- rolling shutter mode , 100nsec \rightarrow S/N=17/1

Final device 75um thick $\rightarrow X/X_0 = 0.18\% !!$

(self supporting, no extra mechanics in sensitive region)

Ch. Kiesling (MPI, Munich)

Si-Strip Tracker of the Fermi Large Area Telescope

Fermi Obervatory with Large Area Telescope (LAT), Pair conversion $20 \text{MeV} \rightarrow 300 \text{GeV}$

- Si-strip/W pair conv. telescope, 1.5 X₀
- 75m² Si-detectors in 18 planes
- very stable operation observed
- almost industrial production (9month)
- 160W power consumption $! \rightarrow 2W/m^2$
- launched 2008, lots of data take

South Atlantic Anomaly (no data taking)

G. Ruggiero (CERN), VERTEX2011

Edgeless Silicon Strip Sensors for TOTEM

Sensitive strips 50 μ close to edge !!

0

move very close to beam within Roman Pot.

Gaseous Pixel Detector

H. van der Graaf (Nikhef) TIPP2011

Gaseous Pixel detector (GridPix) is a MEMS made Micromegas like structure on a CMOS readout chip

Performance :

- position resolution:15 μm
- -single electron efficiency: > 90 %
- track detection efficiency: 99.6 %;

⁹⁰Sr electrons in 0.2 T B-field

$\mu\text{-}\text{TPC}$ operation with TimePix chip

Si-CdTe Compton γ-ray Camera

$$cos heta = 1 - m_e c^2 \left(\frac{1}{E_2} - \frac{1}{E_1 + E_2} \right)$$

S. Takeda (ISAS/JAXA), TIPP2011

Detector R&D, R. Horisberger

SOI-CMOS Pixel Sensors

Silicon On Insulator (SOI) technology with 0.2 μ m CMOS process on Hi-R(Cz 700 Ω · cm) / Low-R(Cz 18 Ω · cm

Buried P-Well(BPW) successfully solves back gate effect.

X-ray picture of a dry sardine

X-ray tube: Mo, 20kV, 5mA

Summary & Conclusions

- Detector Development is a fascinating and highly active field
- New detectors technologies offer new experimental opportunities
- Smaller experiments are quite often first system testers
- Role of micro-electronics is crucial
 - reduce costs of highly segmented systems
 - fast data links
 - fast timing in highly segmented systems
 - waveform sampling and digitization
 - flexible detector specific digital data manipulations (FPGA)
- Beam tests are vital to our community
- Detectors must be tested under equivalent conditions
- HL-LHC detectors need extensive high rate beam tests
- HL-LHC with many Pile-Up events will challenge calorimeter based physics analysis
- Tracker will bee crucial in this task ightarrow particle flow

ightarrow combined tracker-calorimeter design

Thank you for your attention !