Heavy lons: theory

Carlos A. Salgado Universidade de Santiago de Compostela

I will mostly refer to the new theoretical needs in view of the LHC capabilities

Europhysics Conference on High-Energy Physics 2011. Grenoble - France

QCD:An apparently simple lagrangian hides a wealth of **emerging phenomena**

Asymptotic freedom; confinement; chiral symmetry breaking; mass generation; new phases of matter; a rich hadronic spectrum; etc

High-energy nuclear collisions are the experimental tools to access (some of) these properties

What do we expect to learn?

What is the structure of the hadrons at high energy?

 \rightarrow color coherence effects in the partonic wave function

Is the created medium thermalized? How?

 \rightarrow presence of a hydrodynamical behavior

 \rightarrow what is the mechanism of thermalization?

What are the properties of the produced medium?

 \rightarrow identify signals to characterize the medium with well-controlled observables \rightarrow what are the building blocks and how they organize?

Heavy Ions: theory 3

Towards the highest energies

SPS@CERN - Fixed target

pA, SU, PbPb - 90's

 $\sqrt{s} \simeq 20 \text{AGeV}$

nucleus B

EPS-HEP 2011 - Grenoble

Towards the highest energies

Towards the highest energies

Present knowledge

- Screening in the partonic wave functions \rightarrow **color coherence effects**
- Very low viscosities in hydrodynamics \rightarrow ideal fluid behavior
- Strong suppression of high-pt: jet quenching \rightarrow dense deconfined matter

Present knowledge

- Screening in the partonic wave functions \rightarrow **color coherence effects**
- Very low viscosities in hydrodynamics \rightarrow ideal fluid behavior
- Strong suppression of high-pt: jet quenching \rightarrow **dense deconfined matter**

EPS-HEP 2011 - Grenoble

EPS-HEP 2011 - Grenoble

EPS-HEP 2011 - Grenoble

New theory needs for the LHC

LHC explores new regimes of <u>small-x</u> in nuclear partonic structure

nucleus A

nucleus B

- Large uncertainties: Interesting physic to be done

- Nuclear PDFs in DGLAP analyses: standard procedure
- Non-linear evolution and saturation of partonic densities
- Precise knowledge of the initial state is essential for a correct interpretation of the data. E.g. for the determination of viscosity

LHC explores new regimes of <u>large-Q</u> with jets and other hard probes

- In-medium parton shower not know from first principles
- Interpretation of data needs a controlled theoretical framework

- Also, heavy quarks, Z+jets, different quarkonia states

[Obviously, theoretical developments needed for other observables. These are the qualitatively novel regimes due to extended kinematics of LHC]

EPS-HEP 2011 - Grenoble

Initial state: Saturation of partonic densities

Color coherence in the initial wave function

 $\begin{array}{l} \Rightarrow \text{ A new scale expected to determine partonic properties at high energies} \\ &\stackrel{\flat}{\Rightarrow} \text{ Strong fields and large occupation numbers.} \\ &\stackrel{\flat}{\Rightarrow} \text{ Semiclassical approach: Color Glass Condensate} \qquad Q_{\text{sat}}^2 \sim \frac{A^{1/3}}{x^{\lambda}} \end{array}$

EPS-HEP 2011 - Grenoble

Initial state: Saturation of partonic densities

Color coherence in the initial wave function

 $\begin{array}{l} \Rightarrow \text{ A new scale expected to determine partonic properties at high energies} \\ &\stackrel{\scriptstyle >}{\twoheadrightarrow} \text{ Strong fields and large occupation numbers.} \\ &\stackrel{\scriptstyle >}{\twoheadrightarrow} \text{ Semiclassical approach: Color Glass Condensate} \qquad Q_{\text{sat}}^2 \sim \frac{A^{1/3}}{x^{\lambda}} \end{array}$

EPS-HEP 2011 - Grenoble

Non-linear evolution equations [Talk: Albacete]

Screening leads to non-linear terms. E.g. Balitsky-Kovchegov eqs.

 $\frac{\partial N(r,x)}{\partial \log(x_0/x)} = \int d\mathbf{r_1} \, K(\mathbf{r},\mathbf{r_1},\mathbf{r_2}) \left[N(r_1,x) + N(r_2,x) - N(r,x) - N(r_1,x)N(r_2,x) \right]$

New TH developments: NLO BK equations

Provides a solid theoretical framework to do phenomenology

EPS-HEP 2011 - Grenoble

Non-linear evolution equations [Talk: Albacete]

EPS-HEP 2011 - Grenoble

Checks of hydrodynamics

[degree of thermalization of the medium]

EPS-HEP 2011 - Grenoble

Checks of hydrodynamics

[degree of thermalization of the medium]

EPS-HEP 2011 - Grenoble

Checks of hydrodynamics

[degree of thermalization of the medium]

Does not address the question on how thermal equilibrium is reached

- Far from equilibrium initial state needs to equilibrate fast (less than 1 fm) **Difficult question:** a variety of techniques used/essayed

- Perturbative approaches (usually too slow)
- Plasma instabilities
- Strongly coupled calculations (AdS/CFT)

[Talks Kiritsis; Heller AdS/CFT session]

The essential measurement for hydro

EPS-HEP 2011 - Grenoble

The essential measurement for hydro

Initial anisotropies in spacial distributions translate into final (measurable) anisotropies in momentum

Fluid behavior from hydro: viscosity of the QGP

''perfect liquid'': sQGP
 AdS/CFT bound

$$\frac{\eta}{s} \ge \frac{1}{4\pi}$$

[Policastro, Son, Starinets, 2001]

LHC similar to RHIC

EPS-HEP 2011 - Grenoble

Higher harmonics

 \Rightarrow With high precision data, higher terms in the expansion identified For a symmetric medium odd terms are 0 [Talks by Santos; Lee; Seven-by-event fluctuations make them finite Pinkenburg; Pak] τ=0.4 fm/c τ =6.0 fm/c, ideal τ=6.0 fm/c, η/s=0.16 600 10 12 10 12 10 10 500 10 5 5 5 400 8 َ [fm⁻⁴] y [fm] [fm⁻⁴] y [fm] y [fm] 6 300 0 200 4 -5 -5 -5 2 100 -10 -10 -10 0 -10 -5 10 -5 -10 -5 0 5 -10 0 5 10 0 5 10 x [fm] x [fm] x [fm] [Schenke, Jeon, Gale 2010] $\frac{dN}{d\phi} \propto 1 + \sum_{n=1}^{\infty} 2v_n \cos(n\phi)$ \Rightarrow Will allow precise tests of hydro **Constraints to viscosity**

Higher harmonics

 \Rightarrow With high precision data, higher terms in the expansion identified For a symmetric medium odd terms are 0 [Talks by Santos; Lee; Seven-by-event fluctuations make them finite Pinkenburg; Pak] τ=0.4 fm/c τ =6.0 fm/c, ideal τ=6.0 fm/c, η/s=0.16 10 600 10 12 12 10 10 500 10 5 5 5 400 8 ε [fm⁻⁴] y [fm] [fm⁻⁴] ۲ [fm] ۱ y [fm] 300 6 0 200 -5 -5 100 2 0.1 0 -10 -10 -10 -5 0 5 10 -10 -5 0 $v_{2}\{2, \Delta \eta > 1\}$ x [fm] x [fm] [Schenke, Jeon, Gale 2010] $v_{3}\{2, \Delta \eta > 1\}$ $v_{a}{2, \Delta \eta > 1}$ v₂{4} $\frac{dN}{d\phi} \propto 1 + \sum_{n=1}^{\infty} 2v_n \cos(n\phi)$ 0.05 V3/W___ $100 \times V_{3/\Psi_{a}}^{2}$ n = 1 \Rightarrow Will allow precise tests of hydro 20 Ω 10 30 40 50 60 70 80 **Constraints to viscosity** centrality percentile

Hard Probes

Long distance terms modified by the presence of medium

- Nuclear PDFs and new (non-linear) evolution equations
- Probes of hot matter created in the interaction
- EW processes (no hadronization) used as benchmark

$$\sigma^{AB \to h} = \underbrace{f_A^i(x_1, Q^2) \otimes f_B^j(x_2, Q^2)}_{\text{Nuclear PDFs}} \otimes \sigma(ij \to k) \bigotimes D_{k \to h}(z, Q^2) \xrightarrow{\text{Hadronization}}_{\text{Hadronization}}$$

 J/Ψ paradigmatic example

EPS-HEP 2011 - Grenoble

Hard Probes

Long distance terms modified by the presence of medium

- Nuclear PDFs and new (non-linear) evolution equations
- Probes of hot matter created in the interaction
- EW processes (no hadronization) used as benchmark

$$\sigma^{AB \to h} = \overbrace{f_A^i(x_1, Q^2) \otimes f_B^j(x_2, Q^2)}^{ij} \otimes \sigma(ij \to k) \bigotimes D_{k \to h}(z, Q^2)$$

Hadronization
 J/Ψ paradigmatic example

Background subtraction of "cold" nuclear matter effects

- If you know two ingredients you can extract the other...
- Usually proton-nucleus collisions needed (in absence of nuclear DIS)

EPS-HEP 2011 - Grenoble

Nuclear PDFs

 \Rightarrow Initial conditions and error analysis for different NLO sets

- Large uncertainties especially for gluons smaller at large virtuality
- \Rightarrow Notice that parametrization bias effects are present
 - Bands to be considered as lower bounds

Quarkonia suppression

[The first in a list of hard probes...]

Simple intuitive picture [Matsui & Satz 1986]

- Potential screened at high-T
- Bound states not possible
- Suppression of J/Psi in nuclear collisions
- Sequential suppression of excited states

Quarkonia suppression

[The first in a list of hard probes...]

Simple intuitive picture [Matsui & Satz 1986]

- Potential screened at high-T
- Bound states not possible
- Suppression of J/Psi in nuclear collisions
- Sequential suppression of excited states

However, interpretation of the data is not yet clear

- Quarkonia suppressed also in pA
- Not good theoretical control over the suppression
- Could LHC/RHIC improve the situation?

Quarkonia at the LHC

Jet quenching with inclusive particles

Photons don't interact (no effect) quarks and gluons do (suppression)

Very large energy loss - large jet quenching parameter
 dense partonic system

Jet quenching with inclusive particles

Photons don't interact (no effect) quarks and gluons do (suppression)

Jet quenching with inclusive particles: LHC

\Rightarrow Suppression at the LHC slightly stronger than at RHIC

Formalism tested at RHIC provides reasonable description dense partonic system

Suppression of heavy quarks: one remaining puzzle at RHIC

Jet quenching with inclusive particles: LHC

\Rightarrow Suppression at the LHC slightly stronger than at RHIC

Formalism tested at RHIC provides reasonable description dense partonic system

 \Rightarrow Suppression of heavy quarks: one remaining puzzle at RHIC

Di-jet asymmetry at the LHC

 $\Rightarrow \text{ Energy imbalance indicates strong energy loss } A_j = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}}$ [Talk H. Santos]

Jets are suppressed: Studied sample is a subset of the total
 Progress in jet reconstruction TH/EX [Cacciari, Rojo, Salam, Soyez 2010]

Di-jet asymmetry at the LHC

A new theory of jets in a medium

In-medium jets needs to be under theoretical control

Medium-induced radiation off a single quark/gluon used (RHIC pheno)
 Energy loss of leading particle [BDMPS-Z/GLV, etc...]

- Multigluon emissions: color coherence
- 🌂 Ordering variables
- 🎽 Color flow from/to medium

🔌 Recoil...

[Talk G. Milhano]

A new theory of jets in a medium

In-medium jets needs to be under theoretical control

Medium-induced radiation off a single quark/gluon used (RHIC pheno)
 Energy loss of leading particle [BDMPS-Z/GLV, etc...]

The medium-induced gluon radiation

Medium-modification of the splitting probability [BDMPS-Z/GLV, etc...]

Jet-quenching parameter
$$\hat{q}\simeq \frac{\langle k_{\perp}^2\rangle}{\lambda}$$

ightarrow Medium-average of two light-like Wilson lines defines \hat{q}

$$\frac{1}{N^2 - 1} \operatorname{Tr} \langle W^{A\dagger}(\mathbf{x}_{\perp}) W^A(\mathbf{0}) \rangle \simeq \exp \left\{ -\frac{1}{4\sqrt{2}} \hat{q} L_+ \mathbf{x}_{\perp}^2 \right\}.$$

Radiation is IR and collinear finite
 Landau-Pomeranchuk-Migdal effect in QCD
 Broadening

By construction, no color coherence among different emitters is included

Antenna radiation in medium

In vacuum color coherence leads to angular ordering

At the basis of jet parton shower algorithms

Medium breaks the coherence of the pair [Mehtar-Tani, Salgado, Tywoniuk 2010]
Strict out-of-cone emission - "anti-angular ordering" in the soft region

$$\left\langle dN_q \right\rangle_{\phi} = \frac{\alpha_s C_F}{\pi} \frac{d\omega}{\omega} \frac{d\theta}{\theta} \left[\Theta \left(\theta_{q\bar{q}} - \theta \right) + \Delta_{\mathrm{med}}(\theta_{q\bar{q}}, \hat{q}, L) \Theta \left(\theta - \theta_{q\bar{q}} \right) \right]$$

[Also: Mehtar-Tani, Salgado, Tywoniuk 2011; Casalderrey-Solana, Iancu 2011]

Summary

With LHC nuclear collisions at the TeV for the first time

- Access to the small-x and large virtualities jets, EW bosons, HQ ...
- New theoretical tools (evolution equations, in-medium jet evolution)

Created medium (RHIC+LHC) very dense ideal fluid

- Progress on initial conditions and hydro theory: constrain viscosity

Higher statistics and new tools

- Will allow to characterize the medium with unprecedented precision

Is it a liquid? Strongly coupled? Are quasiparticles the relevant degrees of freedom?..

EPS-HEP 2011 - Grenoble