Dark Energy: Theory

J. Lesgourgues

(ITP, EPFL, Lausanne & TH, CERN)

EPS-HEP-2011 Grenoble

The problem

 Current acceleration, if described by FLRW, requires to add (10⁻³eV)⁴ term to Friedmann:

 $3m_{P}^{2} (H^{2} \pm a^{2}/k) = \rho$

- Particle physics predicts
 - $\rho \sim m_P^4 \sim (10^{28} eV)^4$ or m_{susy}^4 or $m_{EW}^4 \sim (10^{11} eV)^4$ from radiative corrections to vacuum energy
 - $\Delta \rho \sim m_{EW}^4 \sim (10^{11} \text{eV})^4$ or $m_{QCD}^4 \sim (10^8 \text{eV})^4$ variations of vacuum energy during phase transitions

Difficulty to make predictive theory

- introduce one theory/model for explaining a single phenomenon: apparent acceleration of the universe (described so far by single number Λ)
- difficult to discriminate between models... and nature does not comply necessarily with « minimal model »
- A bit of hope:
 - may measure more observables in future, see end of talk... but not guaranteed!
 - some models may lead to independent predictions... but actual explanation need not be connected with anything else !

... possible everlasting frustration ...

Λ

 Ideal from Occam's razor point of view, but not satisfactory... (especially, argument of phase transitions)

OCCAM'S RAZOR Your theory is too complex

• Anthropic way: eternal inflation, string landscape

- not against for philosophical reason
- but practical issue: no lower bound, so likelihood impossible to evaluate: 0 no stars/life Ω_{Λ} Ω_{Λ}

• Anthropic way: eternal inflation, string landscape

- 00

- not against for philosophical reason
- but practical issue: no lower bound, so likelihood impossible to evaluate: no stars/life Log ρ_Λ

bound nearly saturated

Beyond Λ

FLRW	Ordinary matter (b,γ,ν,dm particles)	Einstein Gravity	
			averaging effects
			inhomogeneous cosmology
			dark energy models
			modified gravity models

Averaging effects

- background expansion described by average of Einstein Equation (EE), not by EE applied to average quantities.
- non-linear structure formation: « effective contributions » to Friedmann, from averaged squared fluctuations Buchert; Rasanen; ...
- Very difficult to compute, but effect seems to be tiny, and more like radiation enhancement
 Green & Wald 11

- non-linear inhomogeneities (with only dust) may impact d_L(z) and dim supernovae
 - isotropy without homogeneity:
 big non-linear bubble nearly centred on us
 (Copernician principle)
 Célerier 99; Tomita 00; + many...
 - many non-linear bubbles all around us Kantowski 69; Weinberg 76; + many...

toy models built e.g. by sewing FLRW + Tolman-Bondi

• Case of a big bubble: a formal degeneracy

• Case of a big bubble: a formal degeneracy

background level::

• Case of a big bubble: a formal degeneracy

 background level: homogeneous universe

 background level: accelerated homogeneous universe

... unless we can compare 2 past-line cones: scheduled experiment for z(t)

26.07.2011

• Case of a big bubble: a formal degeneracy

 background level: homogeneous universe

 background level: homogeneous universe

... unless we can compare 2 past-line cones: scheduled experiment for z(t)

26.07.2011

- Assuming sCDM + bubble(s), difficulty to explain simultaneously
 - luminosity distance probed by SNIa
 - primary CMB anisotropy spectrum
 - no strong anisotropic ISW / Rees-Sciama effect
 - Large Scale Structure power spectrum

... in currently studies with toy models, no good fit to the data with Λ =0

Brouzakis et al. 08; Valkenburg 09; Biswas et al. 10; ...

• Need theory to predict bubble(s) (phase transitions?)

Dark Energy: quintessence

- canonical scalar fields / quintessence models never taken too seriously by theorists because they just replace one fine-tuning by another one (next slide)
- but popular due to their freedom (in scalar potential): might be effective description of some more fundamental theory (not even true, see end of the talk)

Dark Energy: quintessence

- Acceleration \rightarrow slow-roll: $m_p^2 V''/V \ll 1$
- m_{eff}² = V" << (10⁻³³eV)²: triggers 5th force unless uncoupled to other species; unstable against radiative correction unless invoking symmetry (e.g. shift symmetry): then, back to Λ...
- solution (1): run-away potential.
 But why should the field have the correct VEV today?
 Answer: with a tracking potential. But:
 - Perfect tracking: $V=e^{-\alpha\phi}$

... no fine-tuned parameter but no mechanism for DE domination

• Imperfect tracking: $V = \lambda(\phi/m_p)^{-\alpha}$

... DE takes over if λ fine-tuned as much as m_{eff}^2

Copeland et a. 97; ...

Dark Energy: quintessence

- Acceleration \rightarrow slow-roll: $m_p^2 V''/V \ll 1$
- m_{eff}² = V" << (10⁻³³eV)²: triggers 5th force unless uncoupled to other species; unstable against radiative correction unless invoking symmetry (e.g. shift symmetry): then, back to Λ...
- solution (2): non-canonical kinetic term (K-essence). Tracking behavior until matter/radiation equality. But still some fine-tuning in initial conditions...
 Armendariz-Picon & Mukhanov 00; Malguarti 03; ...
- solution (3): chameleon (mass depends on local matter density)
 Khoury & Weltman; Davies, Brax et al.;...

Dark Energy: coupled quintessence

- more predictive: DE domination can be triggered by known sector of particle physics through coupling with DM or $\nu \prime s$
- MaVaNs:
 - $\mathcal{L} \sim f(\phi)vv$: DE behaviour triggered by non-relativistic transition: $\rho \sim (10^{-3} \text{eV})^4$ comes from $m_v \sim 10^{-2} \text{eV}$
 - predictive: neutrino masses varies with time/position
 - coupling can be reformulated as fifth force which may lead to instabilities (v clumps). Model of Fardon et al. 04 excluded, model of Wetterich et al. requires non-trivial investigation.

Dark Energy: others

- topological defect network? $w < -\frac{1}{3}$ but too large.
- bose condensation of a species (of DM)? Bassett et al. 02
- thermodynamical effect (no ad hoc term in Lagragian, but collective effect of interactions)
 - postulate equation of state for unified dark energy/dark matter: Chaplygin gas
 Kamenshchik et al. 01
 - postulate an equation for bulk viscosity effects in a weakly-self-interacting fluid
 Colistete et al. 07; Li & Barrow 09
 - ... need to fine-tune parameters as in initial problem, plus generic issues of instabilities, requiring some amount of extra fine-tuning

Dark Goo

- first DE model based on microscopic calculation of bulk
 viscosity effects
 Gagnon & Lesgourgues 11
 - fluid made of massive spin-0 particles, decoupling from rest of plasma at arbitrary temperature, remaining self-coupled through $\lambda \phi^4$ interactions: two temperatures T_{ν} and T_{\star}
 - when self-interaction fail to establish equilibrium pressure instantaneously when fluid expands, bulk viscosity: p_{eff} =p-3H§
 - expression of $\rho(T)$, p(T), $\xi(T)$ from QFT at finite T Jeon 95

Dark Goo

- Dark Goo: first DE model based on microscopic calculation of bulk viscosity effects
 Gagnon & Lesgourgues 11
 - works for m ~ [0.01 2] eV, λ ~[2.10⁻⁵ 1]

Modified Gravity

Pandora's box:

Clifton et al. 11

PANDORA'S BOXING GLOVE

- extra fields: scalar-tensor, Enstein-Aether, bimetric, massive, tensor-vectorscalar ...
- higher derivatives and non-local: f(R), Horava-Lifshitz, Galileons ...
- extra dimensions: braneworld with bulk gravity (DGP, degravitation,...), Einstein-Gauss-Bonnet ...

Modified Gravity

- Goal: modify gravity in infrared, but extra light scalar fields with universal coupling to all matter: fifth force, clash with solar system tests; mechanism to prevent this: e.g. chameleon-like
- other problems: ghosts, instabilities, super-luminal propagation...
- technical issue: difficulty to compute perturbation evolution... should get almost same CMB/LSS spectrum as in Λ CDM

DE/MG equivalence

- Modification of $G_{\mu\nu} = 8\pi \mathcal{G} T_{\mu\nu}$ can be put on both sides: formal equivalence between DE/MG
- But if many observables can be predicted/measured, one of the two can appear as much more natural
- Geometry of flat FLRW with linear perturbations:
 - background: one function of time H(t)
 - perturbations: two functions of time and wavenumber $\phi(t,k), \psi(t,k)$

Perturbations as smoking guns

- Independent measurement of $\{\phi(t,k), \psi(t,k)\}$ (growth of structure + weak lensing)
- sCDM: $\phi(t,k) \psi(t,k) \iff anisotropic pressure \sigma(t,k)$ of b + dm = 0 $\psi(t,k) \iff \delta\rho(t,k)$ of b + dm (Poisson)
- MG + ordinary matter : modification of these two relations
- GR + dark energy : same relation but extra source of density and anisotropic pressure perturbations; using $T_{\mu\nu}$ conservation, everything specified in terms of { δp , σ }; DE model provides relations [e.g. quintessence: $\delta p(t,k)=c^2\delta \rho(t,k)$ and $\sigma(t,k)=0$]
- One-to-one correspondence
- If deviations are detected : may look like natural prediction for MG and crazy model for DE, or vice-versa

Conclusion : future of the field completly uncertain !

• Deviations from Λ ?

Model complying with
 observations AND providing non trivial predictions testable in the
 lab or in astrophysics ?

