# Forward-backward asymmetry in top-antitop production in proton-antiproton collisions

Regina Demina University of Rochester for D0 collaboration 7/23/2011

## Asymmetry in top-antitop production

 In early 80s asymmetry observed in e<sup>+</sup>e<sup>-</sup>→µ<sup>+</sup>µ<sup>-</sup> at sqrt (s)=34.6 GeV<< M<sub>Z</sub> was used to verify the validity of EW theory (Phys. Rev. Lett. 48, 1701–1704 (1982)



- Similarly, asymmetry in  $p\overline{p} \rightarrow t\overline{t}$  production could give information about new physics
  - Mediator with axial coupling in s-channel
  - Abnormally enhanced t-channel production
- Complications:
  - Top is not observed directly, but reconstructed through its decay products
  - Proton and antiproton are not point-like objects, lab frame is different from rest frame



## Definitions

• Asymmetry defined for  $ee \rightarrow \mu\mu$ 

$$A = \frac{N(\cos\theta > 0) - N(\cos\theta < 0)}{N(\cos\theta > 0) + N(\cos\theta < 0)}$$

- In proton-antiproton collisions  $\theta \rightarrow y$
- $\Delta y$  is invariant to boosts along *z*-axis
- Asymmetry based on  $\Delta y$  is the same in lab and tt rest frame
- Asymmetry based on rapidity of lepton from top decay
  - Lepton angles are measured with a good precision



History of measurements and predictions D0, reconstruction level

•PRL 100, 142002(2008)  $A(0.9 fb^{-1}) = (12 \pm 8)\%$ •ICHEP2010  $A(4.3 fb^{-1}) = (8 \pm 4)\%$  $A(MC@NLO) = (0.8 \pm 1)\%$ 

CDF, generator level

•PRL 101, 202001(2008)

•Phys. Rev. D 83,112003 (2011)

 $A(1.9 fb^{-1}) = (24 \pm 14)\%$  $A(5.3 fb^{-1}) = (15.7 \pm 7.4)\%$  $A(MC @ NLO) = (5.0 \pm 0.1)\%$ 

# **Reconstruction of top-antitop signal**

**Require**:

 $\rightarrow$ 1 lepton with  $p_T > 20 GeV$ 

 $\rightarrow \mathbb{E}_{T} > 20 GeV$ 

- $\rightarrow \geq 4$  jets with  $p_T > 20 GeV$
- $\rightarrow$  leading jet with  $p_T > 40 GeV$
- $\rightarrow \geq 1 \text{ b} \text{tag}$
- $\rightarrow$ In kinematic fit constrain

$$-M_W = 80.4 GeV$$

 $-M_{t} = 172.5 GeV$ 

 $\rightarrow$  Charge of lepton determines which reconstructed quark is top



Asymmetry at reconstruction level Using kinematic variables of 1+jets events construct a discriminant and fit events with  $\Delta y > 0$  and  $\Delta y < 0$  for top fraction



#### Asymmetry dependence on $M_{tt}$ and $\left|\Delta y\right|$



# Generated asymmetry

- "Unfolding" = correcting for acceptance
  (A) and detector resolution (S)
- Method 1: 4 bin Likelihood unfolding :  $\vec{n}_{reco} = SA\vec{n}_{gen} \Rightarrow \vec{n}_{gen} = A^{-1}S^{-1}\vec{n}_{reco}$

 $\Rightarrow A = (16.9 \pm 7.7^{+1.8}_{-2.6})\%$ 



Problem with Method 1: migration of events near inner bin edge  $(\Delta y \rightarrow 0)$  is underestimated, while for the outer edge it is overestimated Solution: *fine* bins closer to  $\Delta y=0$ 

Problem: statistical fluctuations in data make the fine bin unfolding unstable

Solution: employ *regularization* Bonus: reduced statistical

uncertainties

**Method 2**: fine bin unfolding with regularization

 $A = (19.6 \pm 6.0^{+1.8}_{-2.6})\%$ 

### Results for asymmetry, in %

 Reconstruction level (experiments cannot be directly compared, only to Monte Carlo after reconstruction and selection)



### Lepton-based asymmetry, in %

- Since lepton direction is defined with a very good precision, lepton based asymmetry is simpler to extract
- Lepton from top decay carries information about underlying asymmetry at production
- Can be directly compared to theoretical predictions



10





Born(  $\alpha_{s}^{2}$  ) and box( $\alpha_{s}^{4}$  )

- Coulomb-like repulsion of top and quark and attraction of antitop and quark in QCD
- Interference  $\alpha_s^3$
- Positive asymmetry
- Final state with no extra partons → small transverse momentum of the tt system
- ISR ( $\alpha_s^3$ ) and FSR( $\alpha_s^3$ )
- Interference  $\alpha_s^3$
- Negative asymmetry
- Final state with extra gluons
  →large transverse momentum of the tt system
- Possible extra jets

## Modeling of gluon radiation



# Asymmetry and gluon radiation



- MC@NLO+HERWIG suggests strong dependence of asymmetry on p<sub>T</sub><sup>tt</sup>
- Some PYTHIA tunes suggest even more dramatic dependence while other do not the main parameter that affects this behavior is angular coherence of ISR
- Asymmetry dependence on  $p_T^{tt}$  is a source of systematic uncertainty on the <u>measured</u> value of asymmetry
- Higher weight of 2→2 processes (Born+box) would shift the <u>predicted</u> asymmetry toward more positive and higher values

#### Conclusions

 Using 5.4 fb<sup>-1</sup> of data D0 measured asymmetry in top-antitop production

 $A = (19.6 \pm 6.0^{+1.8}_{-2.6})\%$  $A(MC@NLO) = (5.0 \pm 0.1)\%$ 

• Asymmetry in leptons from top decay is

 $A_{l} = (15.2 \pm 3.8^{+1.0}_{-1.3})\%$  $A_{l}(MC@NLO) = (2.1 \pm 0.1)\%$ 



#### Systematics on A

TABLE VII. Systematic uncertainties on  $A_{\rm FB}$ .

|                 | Absolute uncertainty <sup>a</sup> $(\%)$ |             |             |
|-----------------|------------------------------------------|-------------|-------------|
|                 | Reconstruction level                     |             | Prod. level |
| Source          | Prediction                               | Measurement | Measurement |
| Jet reco        | $\pm 0.3$                                | $\pm 0.5$   | $\pm 1.0$   |
| JES/JER         | +0.5                                     | -0.5        | -1.3        |
| Signal modeling | $\pm 0.3$                                | $\pm 0.5$   | +0.3/-1.6   |
| b-tagging       | -                                        | $\pm 0.1$   | $\pm 0.1$   |
| Charge ID       | -                                        | +0.1        | +0.2/-0.1   |
| Bg subtraction  | -                                        | $\pm 0.1$   | +0.8/-0.7   |
| Unfolding Bias  | -                                        | -           | +1.1/-1.0   |
| Total           | +0.7/-0.5                                | +0.8/-0.9   | +1.8/-2.6   |



-3

## Systematics on A<sub>I</sub>

|                 | Absolute uncertainty <sup>a</sup> $(\%)$ |             |             |
|-----------------|------------------------------------------|-------------|-------------|
|                 | Reconstruction level                     |             | Prod. level |
| Source          | Prediction                               | Measurement | Measurement |
| Jet reco        | $\pm 0.3$                                | $\pm 0.1$   | $\pm 0.8$   |
| JES/JER         | +0.1                                     | -0.4        | +0.1/-0.6   |
| Signal modeling | $\pm 0.3$                                | $\pm 0.5$   | +0.2/-0.6   |
| b-tagging       | -                                        | $\pm 0.1$   | $\pm 0.1$   |
| Charge ID       | -                                        | +0.1        | +0.2/-0.0   |
| Bg subtraction  | -                                        | $\pm 0.3$   | $\pm 0.6$   |
| Total           | $\pm 0.5$                                | $\pm 0.7$   | +1.0/-1.3   |
|                 |                                          |             |             |

TABLE VIII. Systematic uncertainties on  $A_{\rm FB}^l$ .

fu 160 Элд 140

120

100

80

60

40

20

-3

Μ

D

