Exploring New Physics in the C_7 , $C_{7'}$ plane

Sébastien Descotes-Genon

in collaboration with D. Gosh, J. Matias, M. Ramon

Laboratoire de Physique Théorique CNRS & Université Paris-Sud 11, 91405 Orsay, France

EPS-HEP Grenoble - July 22nd 2011

Radiative decays as probes of New Physics

$$b \rightarrow D\gamma^{(*)}$$
 with $D = d, s$

- access to $|V_{t(d,s)}|$ within SM
- cross-check of neutral B mixing (box/penguin)
- loop processes very sensitive to NP
- studied at B factories and hadronic machines

In terms of effective Hamiltonian (integrating d.o.f above b quark) $\mathcal{H}_{\text{eff}} = \sum_{i} C_{i} O_{i}$, main contributions to radiative decays from:

• Electromagnetic dipole:
$$O_7 = \frac{e}{16\pi^2} m_b \, \bar{D} \sigma^{\mu\nu} (1 + \gamma_5) F_{\mu\nu} \, b$$

• Semileptonic (vector) operator:
$$O_9 = \frac{e^2}{16\pi^2} \bar{D} \gamma_\mu (1 - \gamma_5) b \, \bar{\ell} \gamma_\mu \ell$$

• Semileptonic (axial) operator:
$$O_{10} = \frac{e^2}{16\pi^2} \bar{D} \gamma_{\mu} (1 - \gamma_5) b \; \bar{\ell} \gamma_{\mu} \gamma_5 \ell$$

- New physics changes Wilson coeffs and/or adds new operators
- In SM, NNLO C_i in MS-bar with fully anticommuting γ_5 including em corrections [Chetyrkin, Misiak and Münz, Bobeth et al., Huber et al.]

The example of the flipped-sign solution

$$C_7
ightarrow -C_7^{SM}$$

• No change for $\mathcal{B}(B \to X_s \gamma)$ (not sensitive to phase of C_7)

- Indication in Belle/Babar data on B → K*ℓ⁺ℓ⁻
- Accomodate no zero in FB asymmetry
- In "contradiction" with $B \to X_s \ell^+ \ell^-$ [Gambino, Haisch, Misiak]
- Issue related to NP in operators that contribute to $B \to K^* \ell^+ \ell^-$ (dipole, semileptonic, chirally-flipped, scalar and tensor)

Framework, scenarios and classes

How to discuss NP contributions to radiative decays, such as the possibility of flipped-sign solution for C_7 ? SDG, D. Gosh, J. Matias, M. Ramon, hep-ph/1104.3342

Generally, discussion on radiative and leptonic *b* decays to be addressed in given framework, specific scenarios & observables

- Framework: NP in C_7 , C_9 , C_{10} and $C_{7'}$, $C_{9'}$, $C_{10'}$ [chirally-flipped operators $\gamma_5 \rightarrow -\gamma_5$] as a real shift in the Wilson coefficients
- Scenarios (from the more specific to the more general)
 - A : NP in 7,7' only
 - B: NP in 7,7', 9,10 only
 - C: NP in 7,7',9,10,9',10' only
- Classes
 - I: observables sensitive only to 7,7'
 - II: observables sensitive only to 7,7',9,9',10,10'
 - III: observables sensitive to 7,7',9,9',10,10' and more

Observables

Limited sensitivity to hadronic inputs, or strong impact on analysis

- Class-I
 - $\mathcal{B}(B \to X_s \gamma)$ with $E_{\gamma} > 1.6 \, \text{GeV}$ [Misiak, Steinhauser, Haisch]
 - ullet exclusive time-dependent CP asymmetry $\mathcal{S}_{\mathcal{K}^*\gamma}$

[Kagan, Neubert, Feldman, Matias]

- isospin asymmetry $A_l(B \to K^* \gamma)$ [Beneke, Feldman, Seidel]
- Class-II
 - Integrated transverse asym. $\tilde{A}_{\rm T}^2$ in $B \to K^* l^+ l^-$ over low- q^2 region [Kruger and Matias]
- Class-III
 - $\mathcal{B}(B \to X_s I^+ I^-)$

[Bobeth et al., Huber et al.]

• Integrated \tilde{F}_L and \tilde{A}_{FB} in $B \to K^* l^+ l^-$ [1-6 GeV²] [Beneke, Feldman]

For each observable

- Include the effect of chirally-flipped operators
- Simple numerical parametrisation as $\delta C_i = C_i(\mu_b) C_i^{SM}(\mu_b)$
- ullet "naive" constraints $|X_{th}(\delta C_i) X_{exp}| \leq \Delta X_{th} + \Delta X_{exp}$
- Uncertainties ΔX_{th} from SM analysis (assumed similar with NP)

Form factors for $B \to K^* \gamma(*)$

- full q^2 -range using light-cone sum rules
- large recoil for NLO QCD factorisation with soft form factors $\xi_{\perp,||}$ + hard gluon corrections (+ 10% Λ/m_b corrections)

 \implies we use the latter to treat exclusive observables for q^2 =1-6 GeV², extracting 2 soft form factors from LCSR determinations

$$\xi_{\perp}(q^2) = \frac{m_B}{m_B + m_{K^*}} \, V(q^2), \quad \xi_{\parallel}(q^2) = \frac{m_B + m_{K^*}}{2E_{K^*}} A_1(q^2) - \frac{m_B - m_{K^*}}{m_B} A_2(q^2)$$

Form factors for $B \to K^*\gamma(*)$

- full q^2 -range using light-cone sum rules
- large recoil for NLO QCD factorisation with soft form factors $\xi_{\perp,\parallel}$ + hard gluon corrections (+ 10% Λ/m_b corrections)

 \Longrightarrow we use the latter to treat exclusive observables for $a^2=1-6$ GeV², extracting 2 soft form factors from LCSR determinations

$$\xi_{\perp}(q^2) = \frac{m_B}{m_B + m_{K^*}} V(q^2), \quad \xi_{\parallel}(q^2) = \frac{m_B + m_{K^*}}{2E_{K^*}} A_1(q^2) - \frac{m_B - m_{K^*}}{m_B} A_2(q^2)$$
5 other form factors then consistent, e.g. $T_1^{B \to K^*}$
• orange : full form factor from LCSR

[Khodjamirian et allowed]
• grey lines : NLO QCD factorisation [Beneke et al.] using our $\xi_{\perp}(q^2)$

5 other form factors then consistent, e.g. $T_1^{B \to K^*}$

> orange : full form factor from LCSR

> > [Khodjamirian et al]

grey lines : NLO QCD factorisation [Beneke et al.] using our $\xi_{\perp}(q^2)$

$C_7, C_{7'}$ plane : constraints at 1 σ

Class I observables

- A_I (blue)
- B($B \rightarrow X_s \gamma$) (brown)
- $S_{K^*\gamma}$ (red)

Overlap regions (black)

- SM solution $(C_7, C_{7'}) = (C_7^{SM}, 0)$
- two non-SM solutions $(C_7, C_{7'}) = (0, \pm 0.4)$

$C_7, C_{7'}$ plane : constraints at 1 σ

Class I observables

- A_I (blue)
- B($B \rightarrow X_s \gamma$) (brown)
- $S_{K^*\gamma}$ (red)

Overlap regions (black)

- SM solution $(C_7, C_{7'}) = (C_7^{SM}, 0)$
- two non-SM solutions $(C_7, C_{7'}) = (0, \pm 0.4)$
- In qualitative agreement with [Bobeth et al, Hurth et al]
- A_I disfavours flipped-sign solution $(C_7, C_{7'}) = (-C_7^{SM}, 0)$ \Longrightarrow Same conclusion as [Gambino, Haisch, Misiak], without using Class-III $B \to X_s \ell^+ \ell^-$ (less dep. on NP scenario)

Scenario A: class-III observables

Scenario A: NP only in C_7 , $C_{7'}$ \Longrightarrow class-III observables constrain also the shifts δC_7 , $\delta C_{7'}$

- $B(B \to X_s \mu^+ \mu^-)$ more for SM-like region [Gambino, Haisch, Misiak]
- A_{FB} in favour of non-SM regions

 \Longrightarrow Only a small region around $(C_7, C_{7'}) = (0, -0.4)$ with overlap

Scenario A : prediction for class-II observable A_T^2

- In the SM (green, including uncertainties from form factors and estimate of $1/m_b$ -suppressed corrections)
- Under scenario A (pink), including errors from varying C₇, C₇
- Enhancement understood from LO expression in large-recoil limit

Scenario B : class-I constraints in $(\delta C_7, \delta C_{7'})$

In Scenario B, NP in

• $C_7, C_{7'}$: same constraints as before from class-I observables

Scenario B : class-III constraints in $(\delta C_9, \delta C_{10})$

In Scenario B, NP in

- C_7 , $C_{7'}$: same constraints as before from class-I observables
- C_9 , C_{10} : to be fixed from class-III observables (in principle, class-III could also constrain C_7 , $C_{7'}$ but not here)

- Small absolute values of (C₉, C₁₀) disfavoured
- Qualitative agreement with [Hurth et al.]

SDG (LPT-Orsay)

Scenario B: overlap and non-SM regions

- $\mathcal{B}(B \to X_{s}\mu^{+}\mu^{-})$ (green)
- A_{FB} (brown)
- *F*_L (grey)

Two overlap regions (black)

- SM region around $(C_9, C_{10}) = (C_9^{SM}, C_{10}^{SM})$
- non-SM region around $(C_9, C_{10}) = (-C_9^{SM}, -C_{10}^{SM})$

Scenario B: overlap and non-SM regions

Both combined regions in (C_9, C_{10}) can accomodate values of $(C_7, C_{7'})$ either in the SM region or the two non-SM ones.

 \Longrightarrow Scenario B NP may alter (C_7,C_7') and/or (C_9,C_{10}) and reproduce the experimental value $B\to X_s\mu^+\mu^-$ at the same time

SDG (LPT-Orsay)

Scenario B : prediction for class-II obs. $A_T^2(q^2)$

- $A_T^2(q^2)$ for $q^2 = 1 ... 6 \text{ GeV}^2$
- Different shapes for the three regions in (C₇, C_{7'})
 - $(\delta C_7, \delta C_{7'}) \simeq (0,0)$
 - $(\delta C_7, \delta C_{7'}) \simeq (0.3, -0.4)$
 - $(\delta C_7, \delta C_{7'}) \simeq (0.3, 0.4)$
 - two possibilities for SM and non-SM regions for (C₉, C₁₀)
- Very large uncertainties due to the size of the two regions for (C₉, C₁₀) (in particular from non-SM region)

Scenario C: class-III observables

In Scenario B, NP in

- $C_7, C_{7'}$: same constraints as before from class-I observables
- C_9 , C_{10} , $C_{9'}$, $C_{10'}$: to be fixed from class-III observables

Actually, only B($B \rightarrow X_s \mu^+ \mu^-$) elliptic constraint still yields constraints

 \Longrightarrow Too many possibilities to get a prediction for A_T^2

Conclusion

- Effective Hamiltonian to probe NP in radiative/leptonic decays
- Need to define framework/scenario
 with classification of observables (A_T² interesting with that respect)
- Starting point: C_7 , $C_{7'}$ plane from class-I observables
 - Flipped-sign solution disfavoured by $A_l(B \to K^* \gamma)$ irrespective of NP in semileptonic operators
 - Funny non-SM regions ($C_7 = 0, C_{7'} = \pm 0.4$)
- Various scenarios of NP considered
 - A (NP in $C_{7,7'}$ only): small region in $(C_7, C_{7'})$, with prediction for A_T^2
 - B (NP in $C_{7,7',9,10}$): two regions in (C_9, C_{10})
 - C (NP in $C_{7,7',9,10,9',10'}$): only weak bounds from $B \to X_s \ell^+ \ell^-$

Outlook

- Scalar, tensors? Other (well-controlled) observables?
- Bin-by-bin information at low q² rather than averages
- Proper statistical treatment for combination

Thanks for your attention!

Back-up

Constraint on $C_{10}, C_{10'}$ from $B_s \to \mu^+ \mu^-$

$$\mathcal{B}(\bar{B}_{s} \to \mu^{+}\mu^{-})|_{axial} = \frac{G_{F}^{2}\alpha^{2}}{16\pi^{3}}f_{B_{s}}^{2}m_{B_{s}}\tau_{B_{s}}|V_{tb}V_{ts}^{*}|^{2}m_{\mu}^{2}\sqrt{1 - \frac{4m_{\mu}^{2}}{m_{B_{s}}^{2}}}|C_{10} - C_{10'}|^{2}$$

Using our inputs, we get

$${\cal B}(\bar{B}_s\to\mu^+\mu^-)^{\rm SM}=(3.44{\pm}0.32){\cdot}10^{-9}$$

one order of magnitude smaller than 90% CL exp bound

$${\cal B}(\bar{B}_s o \mu^+ \mu^-)^{exp} < 3.2 \cdot 10^{-8}.$$

and only weak constraints on C_{10} , $C_{10'}$

At two sigmas : $(C_7, C_{7'})$ and scenario A

 $(C_7, C_{7'})$ from class-I

 $B o X_{\mathcal{S}} \mu^+ \mu^-$ in scenario A

At two sigmas : scenario B and C

- Scenario B (up): $B \rightarrow X_{\rm S} \mu^+ \mu^$ and \tilde{F}_{l}
- Scenario C (down): $B o X_{\rm S} \mu^+ \mu^-$

$$B \to X_{s}\mu^{+}\mu^{-}$$

SM prediction for $B \to K^* \ell^+ \ell^-$: $d\Gamma/dq^2$ and A_{FB}

$\mu_b = 4.8 \text{ GeV } [/2 \rightarrow \times 2]$	$\mu_0 = 2M_W [/2 \rightarrow \times 2]$
$\sin^2\theta_W=0.2313$	
$\alpha_{em}(M_Z) = 1/128.940$	$\alpha_s(M_Z) = 0.1184 \pm 0.0007$
$m_t^{ m pole} = 173.3 \pm 1.1 \ { m GeV}$	$m_b^{1S} = 4.68 \pm 0.03 \mathrm{GeV}$
$m_c^{\overline{MS}}(m_c) = 1.27 \pm 0.09 \ { m GeV}$	$m_s^{\overline{MS}}(2 \text{ GeV}) = 0.101 \pm 0.029 \text{ GeV}$
$\lambda_{\it CKM} = 0.22543 \pm 0.0008$	$A_{\it CKM} = 0.805 \pm 0.020$
$ar{ ho} = 0.144 \pm 0.025$	$ar{\eta}=$ 0.342 \pm 0.016
${\cal B}(B o X_c e ar{ u}) = 0.1061 \pm 0.00017$	$C = 0.58 \pm 0.016$
$\lambda_2 = 0.12 \mathrm{GeV}^2$	
$\Lambda_h = 0.5 \text{ GeV}$	$f_B = 0.200 \pm 0.025 \mathrm{GeV}$
$f_{K^*, } = 0.220 \pm 0.005 \mathrm{GeV}$	$f_{K^*,\perp}(2 \text{ GeV}) = 0.163 \pm 0.008 \text{ GeV}$
$\xi_{\perp}(0) = 0.31^{+0.20}_{-0.10}$	$\xi_{ }(0) = 0.10 \pm 0.03$
$a_{1, ,\perp}$ (2 GeV) = 0.03 ± 0.03	$a_{2, ,\perp}(2 \text{ GeV}) = 0.08 \pm 0.06$
$\lambda_B(\mu_h) = 0.51 \pm 0.12 \mathrm{GeV}$	
$f_{B_s} = 0.2358 \pm 0.0089 \text{GeV}$	$ au_{B_s} = 1.472 \pm 0.026 \text{ ps}$

Effective Hamiltonian

$$\mathcal{H}_{\mathrm{eff}} = -rac{4G_F}{\sqrt{2}}\left(V_{tb}V_{ts}^*\mathcal{H}_{\mathrm{eff}}^{(t)} + V_{ub}V_{us}^*\mathcal{H}_{\mathrm{eff}}^{(u)}
ight) + h.c.,$$

[Chetyrkin, Misiak and Münz, Bobeth et al., Huber et al.]

$$\mathcal{H}_{\mathrm{eff}}^{(t)} = \sum_{i=1}^{6} C_i \mathcal{O}_i + \sum_{i=7}^{10} (C_i \mathcal{O}_i + C_{i'} \mathcal{O}_{i'}),$$

with dipole and semileptonic operators, SM and chirally-flipped

$$\begin{split} \mathcal{O}_7 &= \frac{e}{16\pi^2} m_b (\bar{s} \sigma_{\mu\nu} P_R b) F^{\mu\nu}, \qquad \mathcal{O}_{7'} = \frac{e}{16\pi^2} m_b (\bar{s} \sigma_{\mu\nu} P_L b) F^{\mu\nu}, \\ \mathcal{O}_9 &= \frac{e^2}{16\pi^2} (\bar{s} \gamma_\mu P_L b) (\bar{\ell} \gamma^\mu \ell), \qquad \mathcal{O}_{9'} = \frac{e^2}{16\pi^2} (\bar{s} \gamma_\mu P_R b) (\bar{\ell} \gamma^\mu \ell), \\ \mathcal{O}_{10} &= \frac{e^2}{16\pi^2} (\bar{s} \gamma_\mu P_L b) (\bar{\ell} \gamma^\mu \gamma_5 \ell), \qquad \mathcal{O}_{10'} = \frac{e^2}{16\pi^2} (\bar{s} \gamma_\mu P_R b) (\bar{\ell} \gamma^\mu \gamma_5 \ell), \end{split}$$

where $P_{L,R} = (1 \mp \gamma_5)/2$ projection over the chiralities

Standard Model values

In the SM, NNLO in MS-bar with fully anticommuting γ_5 including electromagnetic corrections [Chetyrkin, Misiak and Münz, Bobeth et al., Huber et al.]

$C_1(\mu_b)$	$C_2(\mu_b)$	$C_3(\mu_b)$	$C_4(\mu_b)$	$C_5(\mu_b)$
-0.263	1.011	-0.006	-0.081	0.000
$C_6(\mu_b)$	$C_7^{ m eff}(\mu_b)$	$C_8^{ m eff}(\mu_b)$	$C_9(\mu_b)$	$C_{10}(\mu_b)$
0.001	-0.292	-0.166	4.075	-4.308

- High-scale $\mu_0 = 2M_W$ [uncertainty: varied from M_W to $4M_W$]
- Low-scale $\mu_b = 4.8$ GeV [uncertainty: varied from 2.4 to 9.6 GeV]

For the chirally-flipped operators, we have the SM values

$$C_{7'}^{SM} = \frac{m_s}{m_b} C_7^{SM}, \qquad C_{9',10'}^{SM} = 0$$

Class-I observables: inclusive $\mathcal{B}(\bar{B} \to X_s \gamma)$

Class-I : only depending on $C_7, C_{7'}$, related to radiative decays [Misiak, Gambino, Steinhauser...]

$$\begin{array}{lcl} \mathcal{B}(\bar{B}\to X_{s}\gamma)^{exp}_{E_{\gamma}>1.6\,\mathrm{GeV}} &=& (3.55\pm0.24\pm0.09)\times10^{-4} \\ \mathcal{B}(\bar{B}\to X_{s}\gamma)^{th}_{E_{\gamma}>1.6\,\mathrm{GeV}} &=& \left[a_{(0,0)}+a_{(7,7)}\left[(\delta C_{7})^{2}+(\delta C_{7'})^{2}\right]+\right. \\ &\left.\left.+a_{(0,7)}\,\delta C_{7}+a_{(0,7')}\,\delta C_{7'}\right]\times10^{-4} \\ \mathcal{B}(\bar{B}\to X_{s}\gamma)^{SM}_{E_{\gamma}>1.6\,\mathrm{GeV}} &=& (3.15\pm0.23)\times10^{-4} \end{array}$$

Class-I observables: inclusive $\mathcal{B}(\bar{B} \to X_s \gamma)$

Class-I : only depending on $C_7, C_{7'}$, related to radiative decays [Misiak, Gambino, Steinhauser...]

$$\mathcal{B}(\bar{B} \to X_{s}\gamma)^{\text{exp}}_{E_{\gamma} > 1.6 \, \text{GeV}} = (3.55 \pm 0.24 \pm 0.09) \times 10^{-4}$$

$$\mathcal{B}(\bar{B} \to X_{s}\gamma)^{\text{th}}_{E_{\gamma} > 1.6 \, \text{GeV}} = \begin{bmatrix} a_{(0,0)} + a_{(7,7)} \left[(\delta C_{7})^{2} + (\delta C_{7'})^{2} \right] + \\ + a_{(0,7)} \, \delta C_{7} + a_{(0,7')} \, \delta C_{7'} \right] \times 10^{-4}$$

$$\mathcal{B}(\bar{B} \to X_{s}\gamma)^{\text{SM}}_{E_{\gamma} > 1.6 \, \text{GeV}} = (3.15 \pm 0.23) \times 10^{-4}$$

SM value [a_(0,0)] expressed as

$$\mathcal{B}(B o X_{s}\gamma)_{E_{\gamma} > E_{0}}^{SM} = \mathcal{B}(B o X_{c}e\bar{\nu}) \left| \frac{V_{ts}^{*}V_{tb}}{V_{cb}} \right|^{2} \frac{6\alpha_{\mathrm{em}}}{V_{c}} [P(E_{0}) + N(E_{0})]$$
 $P(E_{0}) = \sum_{i,j=1...8} C_{i}^{\mathrm{eff}}(\mu) C_{j}^{\mathrm{eff}*}(\mu) K_{ij}(E_{0},\mu)$

- left- and right-handed polarisations add up incoherently
 - $a_{(7,7)}=a_{(7',7')}$ same structure for C_7 and $C_{7'}$ $\gamma_5 \rightarrow -\gamma_5$
 - $a_{(0,7)} \neq a_{(0,7')}$ since no 4-quark chirally flipped operators
- numerical a's reproducing [Misiak, Steinhauser, Haisch]

24

Class-I observables: isospin asymmetry in $B \to K^* \gamma$

[Kagan and Neubert...]

$$A_{I}(B \to K^{*}\gamma) = \frac{\Gamma(\bar{B}^{0} \to \bar{K}^{*0}\gamma) - \Gamma(B^{-} \to K^{*-}\gamma)}{\Gamma(\bar{B}^{0} \to \bar{K}^{*0}\gamma) + \Gamma(B^{-} \to K^{*-}\gamma)}$$

- NLO QCD factorisation: isospin asymmetry from nonfactorisable contributions where spectator quark emits the photon
- from 4-quark and chromomagnetic operators
- thus no change once chirally-flipped operators included, apart from normalisation to isospin-averaged branching ratio

Class-I observables: isospin asymmetry in $B \to K^* \gamma$

[Kagan and Neubert...]

$$A_{I}(B \to K^{*}\gamma) = \frac{\Gamma(\bar{B}^{0} \to \bar{K}^{*0}\gamma) - \Gamma(B^{-} \to K^{*-}\gamma)}{\Gamma(\bar{B}^{0} \to \bar{K}^{*0}\gamma) + \Gamma(B^{-} \to K^{*-}\gamma)}$$

- NLO QCD factorisation: isospin asymmetry from nonfactorisable contributions where spectator quark emits the photon
- from 4-quark and chromomagnetic operators
- thus no change once chirally-flipped operators included, apart from normalisation to isospin-averaged branching ratio

$$\begin{array}{lcl} A_{l}(B \to K^{*}\gamma)^{exp} & = & 0.052 \pm 0.026 \\ A_{l}(B \to K^{*}\gamma)^{th} & = & c \times \frac{\sum_{k} d_{k}(\delta C_{7})^{k}}{\sum_{k,l} e_{k,l}(\delta C_{7})^{k}(\delta C_{7'})^{l}} \pm \delta c \,. \\ A_{l}(B \to K^{*}\gamma)^{SM} & = & 0.041 \pm 0.025 \end{array}$$

• c, d, e determined numerically, reproducing [Kagan and Neubert, Feldmann and Matias]

Class-I observables: $B \to K^* \gamma$ CP-asymmetry

[Beneke Feldmann Seidel, Ball and Zwicky]

13/04/11

26

$$\frac{\Gamma(\bar{B}^0(t)\to\bar{K}^{*0}\gamma)-\Gamma(B^0(t)\to K^{*0}\gamma)}{\Gamma(\bar{B}^0(t)\to\bar{K}^{*0}\gamma)+\Gamma(B^0(t)\to K^{*0}\gamma)}=S_{K^*\gamma}\sin(\Delta m_B t)-C_{K^*\gamma}\cos(\Delta m_B t)$$

- Probe of photon helicity $S_{\mathcal{K}^*\gamma} = \frac{2\operatorname{Im}\left[e^{-2i\beta}\left(\mathcal{A}_L^*\bar{\mathcal{A}}_L + \mathcal{A}_R^*\bar{\mathcal{A}}_R\right)\right]}{|\mathcal{A}_L|^2 + |\mathcal{A}_R|^2 + |\bar{\mathcal{A}}_L|^2 + |\bar{\mathcal{A}}_R|^2}$
- Cam be determined at NLO in QCD factorisation. At LO.

$$S_{K^{*}\gamma}^{(\mathrm{LO})} = \frac{-2\left|C_{7'}/C_{7}\right|}{1+\left|C_{7'}/C_{7}\right|^{2}}\sin\left(2\beta - \arg\left(C_{7}C_{7'}\right)\right)} \\ \text{[Grinstein et al, Bobeth et al]}$$

Class-I observables: $B \to K^* \gamma$ CP-asymmetry

[Beneke Feldmann Seidel, Ball and Zwicky]

$$\frac{\Gamma(\bar{B}^0(t)\to\bar{K}^{*0}\gamma)-\Gamma(B^0(t)\to K^{*0}\gamma)}{\Gamma(\bar{B}^0(t)\to\bar{K}^{*0}\gamma)+\Gamma(B^0(t)\to K^{*0}\gamma)}=S_{K^*\gamma}\sin(\Delta m_B t)-C_{K^*\gamma}\cos(\Delta m_B t)$$

- Probe of photon helicity $S_{\mathcal{K}^*\gamma} = \frac{2\operatorname{Im}\left[e^{-2i\beta}\left(\mathcal{A}_L^*\bar{\mathcal{A}}_L + \mathcal{A}_R^*\bar{\mathcal{A}}_R\right)\right]}{|\mathcal{A}_L|^2 + |\mathcal{A}_R|^2 + |\bar{\mathcal{A}}_L|^2 + |\bar{\mathcal{A}}_R|^2}$
- Cam be determined at NLO in QCD factorisation. At LO,

$$S_{K^{*}\gamma}^{\left(\mathrm{LO}
ight)} = rac{-2\left|C_{7'}/C_{7}
ight|}{1+\left|C_{7'}/C_{7}
ight|^{2}}\sin\left(2eta-\arg\left(C_{7}C_{7'}
ight)
ight)}$$
 [Grinstein et al, Bobeth et al]

$$S_{K^*\gamma}^{\text{exp}} = -0.16 \pm 0.22$$

$$S_{K^*\gamma} = f_{-\delta_f^u}^{+\delta_f^u} + \frac{\sum_{k,l} g_{k,l} (\delta C_7)^k (\delta C_{7'})^l}{\sum_{k,l} h_{k,l} (\delta C_7)^k (\delta C_{7'})^l}$$

$$S_{K^*\gamma}^{SM} = -0.30 \pm 0.01$$

ullet f, g, h fitting coefficients and uncertainties determined numerically

SDG (LPT-Orsay) NP in C_7 , $C_{7'}$ plane 13/04/11

Class-II observables: A_T^2 asymmetry

Class-II: depending only on dipole and semileptonic operators

$$B o K^* \ell^+ \ell^-$$
 asymmetry $A_T^2(q^2) = rac{|A_\perp|^2 - |A_\parallel|^2}{|A_\perp|^2 + |A_\parallel|^2}$, [Kruger and Matias]

- $B \to K^* \ell^+ \ell^-$ expressed in terms of 7 spin amplitudes
- A_{\perp} and A_{\parallel} depend only on $C_{7,7',9,9',10,10'}$ (no tensors or scalars)
- can be determined from $d\Gamma/d\phi$
- weakly sensitive to soft form factors (only at NLO QCDF)
- not measured yet, but potential to discriminate among scenarios

Class-II observables: A_T^2 asymmetry

Class-II: depending only on dipole and semileptonic operators

$$B o K^* \ell^+ \ell^-$$
 asymmetry $A_T^2(q^2) = \frac{|A_\perp|^2 - |A_\parallel|^2}{|A_\perp|^2 + |A_\parallel|^2}$, [Kruger and Matias]

- ullet $B \to K^* \ell^+ \ell^-$ expressed in terms of 7 spin amplitudes
- A_{\perp} and A_{\parallel} depend only on $C_{7,7',9,9',10,10'}$ (no tensors or scalars)
- can be determined from $d\Gamma/d\phi$
- weakly sensitive to soft form factors (only at NLO QCDF)
- not measured yet, but potential to discriminate among scenarios

At low q^2 , at NLO QCD factorisation $A_T^2(q^2) = A_T^{(2),\,CV}(q^2)_{-\delta_d(q^2)}^{+\delta_u(q^2)}$ with fitting q^2 -polynomials for errors δ_u, δ_d and central value

$$A_T^{(2), CV}(q^2) = \frac{\sum_{i=0,7,7',9,9',10,10'} \sum_{j=i,..10'} F_{(i,j)}(q^2) \delta C_i \delta C_j}{\sum_{i=0,7,7',9,9',10,10'} \sum_{j=i,..10'} G_{(i,j)}(q^2) \delta C_i \delta C_j}$$

[$\delta C_0 = 1$ to deal with constant, linear and quadratic terms]

Class-III observables: $\bar{B} \to X_s \, \mu^+ \, \mu^-$

Class-III: depending on dipole and semileptonic operators, but also others (scalar, tensors) —>most of semileptonic observables

ullet $ar{B}
ightarrow X_{\mathcal{S}} \, \mu^+ \, \mu^-$ at low q^2 [1-6 GeV²]

$$\mathcal{B}(\bar{B} \to X_{s} \, \mu^{+} \, \mu^{-})^{exp} = (1.60 \pm 0.50) \times 10^{-6}$$

$$\mathcal{B}(B \to X_{s} \mu^{+} \mu^{-}) = 10^{-7} \times \sum_{i,j=0,7,7',9,9',10,10'} b_{(i,j)} \delta C_{i} \delta C_{j}$$

$$\mathcal{B}(\bar{B} \to X_{s} \, \mu^{+} \, \mu^{-})^{SM} = (1.59 \pm 0.15) \times 10^{-6}$$

- δC_7 , δC_9 , δC_{10} -only contributions known up to NNLO including e.m. corrections [Bobeth et al, Huber et al]
- $\delta \textit{C}_{7'}, \delta \textit{C}_{9'}, \delta \textit{C}_{10'}$ -only contributions with similar structure ($\gamma_5 \to -\gamma_5$)
- crossed terms (primed-unprimed) only at LO in α_s , and are suppressed by m_s/m_b [Guetta Nardi]
- b coefficients determined numerically agreing with [Huber et al]

Class-III observables: \tilde{A}_{FB} and \tilde{F}_{L}

Average forward-backward asymmetry \tilde{A}_{FB} and longitudinal polarisation \tilde{F}_L over low $q^2 = 1-6 \text{ GeV}^2$

$$rac{dA_{FB}}{dq^2} = \left(\int_0^1 d(\cos\theta_I) rac{d^2\Gamma}{dq^2 d\cos\theta_I} - \int_{-1}^0 \ldots \right) / rac{d\Gamma}{dq^2} \qquad F_L = |A_0|^2 / rac{d\Gamma}{dq^2}$$

Class-III observables: \tilde{A}_{FB} and \tilde{F}_L

Average forward-backward asymmetry \tilde{A}_{FB} and longitudinal polarisation \tilde{F}_L over low $q^2=1$ -6 GeV²

$$rac{dA_{\text{FB}}}{dq^2} = \left(\int_0^1 d(\cos\theta_I) rac{d^2\Gamma}{dq^2 d\cos\theta_I} - \int_{-1}^0 \ldots
ight) / rac{d\Gamma}{dq^2} \qquad F_L = |A_0|^2 / rac{d\Gamma}{dq^2}$$

$$\tilde{\textit{A}}^{exp}_{\textit{FB}} = 0.33^{+0.22}_{-0.24} \qquad \tilde{\textit{F}}^{exp}_{\textit{L}} = 0.60^{+0.18}_{-0.19}$$

$$\tilde{\textit{A}}_{\textit{FB}} = \frac{\int_{1 \text{GeV}^2}^{6 \text{GeV}^2} \sum_{i=0,7,7',9,9',10,10'} \sum_{j=i,..10'} \textit{H}_{(i,j)}(\textit{q}^2) \delta \textit{C}_i \delta \textit{C}_j \textit{d}\textit{q}^2}{\int_{1 \text{GeV}^2}^{6 \text{GeV}^2} \sum_{i=0,7,7',9,9',10,10'} \sum_{j=i,..10'} \textit{I}_{(i,j)}(\textit{q}^2) \delta \textit{C}_i \delta \textit{C}_j \textit{d}\textit{q}^2} \\ -\tilde{\delta}_{\textit{d}}$$

computed at NLO in QCD factorisation [Beneke and Feldmann] with fitting q^2 -polynomials for central value and errors (same for \tilde{F}_L)

$$\tilde{A}_{FB}^{SM} = 0.022_{-0.028}^{+0.028}$$
 $\tilde{F}_{L}^{SM} = 0.732_{-0.031}^{+0.021}$