Performance studies of *b***-tagging algorithms** using tt processes in pp collisions Kirika Uchida for ATLAS collaboration universität**bonn**

D-tagging is an identification of jets stemming from the hadronization of *b*-quarks (*b*-jets) making use of the distinctive properties; the long lifetime of *b*-hadron, the larger transverse momentum of their decay products due to the large mass of *b*-hadron, etc. Good tracking with the inner detector is crucial for the algorithms. Simple taggers are calibrated with early data taken in 2010 with 35 pb⁻¹

JetProb algorithm makes use of the impact parameters of the tracks associated with a jet. Impact parameters (IP) in *b*-jets distribute wider than the resolution function.

b-tagging Calibration has been done with QCD di-jet sample using the algorithms that break down for *b*-jets above 100 GeV. tt process provides calibrations in higher $p_T b$ -jet. A lot of tt events produced by LHC make it possible to do direct *b*-tagging calibrations for the high p_T *b*-jets in ttsample for the first time!

 $t \to bW, W \to q\bar{q}(2 \text{ jets}) \text{ or } l\nu(1 \text{ lepton})$ **Top decay:**

Single lepton and dilepton channels are analyzed

SV0 algorithm reconstructs secondary vertices. The longer lifetime of *b*-hadrons can produce secondary vertices.

10⁴ 10^{3} 10 20 30 40 -20 -10 0 IP significance S_d

Direct calibration in data is necessary because these variables highly depend on data taking conditions. for the *b*-tagging performance study (lepton : $e \& \mu$ including leptonic τ decay.)

Event topology

- Isolated leptons,
- at least two jets (b-jets),
- Iarge Missing ET.

b-tagging performance measurements ATLAS-CONF-2011-089

Average *b*-jet tagging efficiency at 50 and 70 % for $t\bar{t}$ sample ($p_T > 15 \text{ GeV}$) working points are calibrated for JetProb (JetProb50 & JetProb70) and 50 % for SV0 (SV050.)

Tag counting method counts the number of $t\bar{t}$

events with n *b*-tagged jets, <*N_n*> to simultaneously determine the top normalization and the tagging efficiency. Both in single lepton and dilepton channels are performed.

 $\langle N_n \rangle$ for single lepton channel,

$$< N_n > = \sum_{i,j,k} \left\{ (\sigma_{t\bar{t}} \cdot BF \cdot A_{t\bar{t}} \cdot L \cdot F_{ijk}^{t\bar{t}} + N_{bkg} \cdot F_{ijk}^{bkg}) \times \sum_{i'+j'+k'=n} C_i^{i'} \cdot \epsilon_b^{i'} \cdot (1-\epsilon_b)^{i-i'} \cdot C_j^{j'} \cdot \epsilon_c^{j'} \cdot (1-\epsilon_c)^{j-j'} \cdot C_k^{k'} \cdot \epsilon_l^{k'} \cdot (1-\epsilon_l)^{k-k'} \right\}$$

Simultaneous fit of tt cross section (σ_{tt}) and **b-tagging** efficiency (ε_b) with the likelihood function,

$$L = \prod_{n=1}^{3} \operatorname{Pois}(N_n, \langle N_n \rangle)$$

En UNCE	ertaiı	ntv	
urce	SV050	JetProb50	JetProb70
	± 0.2 ± 0.3	± 0.2 ± 0.5	± 0.6 ± 0.9
jets normalisation	± 3.5 ± 0.7	±3.6 ±0.8	± 2.7 ± 0.7
igle top normalisation	± 0.5 ± 1.5	± 0.5 ± 1.3	± 0.4 ± 1.0
jets flavour fractions	± 0.4 ± 0.6	± 0.4 ± 0.8	$\frac{\pm 0.3}{\pm 0.9}$
enerator	±0.4	±0.4	±0.4
rton shower R/FSR	± 0.4 ± 1.4	± 0.5 ± 1.5	± 0.5 ± 1.5
tal systematic itistical	± 4.3 ± 9.1	$\frac{\pm 4.4}{\pm 8.8}$	$\frac{\pm 3.7}{\pm 6.1}$
40 40		● Combin ★ MC	ed fit

μμ

+8.8/-6.2

 ± 0.2

 ± 0.3

 ± 8.9

 ± 1.3

 ± 0.8

 ± 2.3

 ± 1.1

 ± 1.3

 ± 3.4

+13.3/-11.8

+31.7/-26.7 +25.0/-22.0 +16.8/-15.3

ee

+13.1/-10.9

 ± 0.3

 ± 0.3

 ± 4.6

 ± 1.1

±0.9

 ± 3.5

 ± 0.5

 ± 1.6

 ± 3.4

+14.9/-13.0

eμ

+8.0/-7.0

 ± 0.2

 ± 0.3

±2.9

 ± 1.6

 ± 0.9

 ± 4.3

 ± 0.8

 ± 1.3

 ± 3.4

+10.4/-9.6

+10.5/-9.1

 ± 0.2

±0.3

 ± 4.6

 ± 1.5

 ± 0.9

 ± 4.0

 ± 0.8

 ± 1.4

 ± 3.4

+12.9/-11

 ± 12.5

- ▶ *i*, *j*, and *k* (*i*', *j*', & *k*') are the number of pretagged (tagged) b-, c-, and light-flavour jets,
- \triangleright $C^{\alpha'}_{\alpha}$ is the number of permutations with α for the three jet flavours.
- **F**_{ijk} is the fraction of pretagged events containing **i** b-jets, **j** c-jets, and **k** light-flavour jets, from simulation.
- > **BF** is the branching fraction to each final state (e+jets and μ +jets),
- \blacktriangleright **A**_{tt} is the selection efficiency in this final state,
- **L** is the integrated luminosity.
- The efficiency to tag a c-jet and light-flavour jet, ε_c , and ε_l respectively, are fixed to the values found in simulation, corrected with data-tosimulation scale factors measured by other calibration.

Fake lepton normalisation	±1.5	±1.3	± 1.0
Z+jets flavour fractions	±0.4	±0.4	±0.3
Jet energy scale	±0.6	±0.8	±0.9
Generator	±0.4	±0.4	±0.4
Parton shower	±0.4	± 0.5	± 0.5
ISR/FSR	±1.4	± 1.5	±1.5
Total systematic	±4.3	± 4.4	±3.7
Statistical	±9.1	±8.8	±6.1

•

0.45 0.5 0.55 0.6 0.65

dilepton

Source

Acceptance

Luminosity

Statistical

Total systematic

Z+jets normalisation

Diboson normalisation

Single top normalisation Fake lepton normalisation

Z+heavy flavour fraction

Flavour composition other

ε_b uncertainty

Source	SV050	JetProb50	JetProb70
ε _c	±1.0	±1.2	±1.3
ε_l	±0.1	< 0.1	± 0.1
W+jets background normalisation	±2.4	±3.1	+7.8/-6.7
Other backgrounds normalisation	±0.6	±0.6	± 1.1
QCD flavour fractions	±2.8	± 2.6	±4.3
W+jets flavour fractions	+2.2/-2.7	+1.8/-2.3	+1.6/-1.9
Jet reconstruction	+0.8	+0.8	+0.8
Jet energy scale and resolution	+0.4/-0.6	+0.3/-0.6	+0.3/-0.6
Lepton trigger	< 0.1	< 0.1	< 0.1
Lepton reconstruction and identification	< 0.1	< 0.1	< 0.1
Lepton momentum scale and resolution	±0.1	± 0.1	± 0.1
Generator	-0.2	-0.4	-0.2
Parton shower	+0.5	+0.6	+0.6
PDF uncertainty	< 0.1	< 0.1	< 0.1
ISR/FSR	+0.9/-1.0	+0.8/-0.7	+0.9/-0.8
Pileup	< 0.1	< 0.1	< 0.1
Luminosity	< 0.1	±0.1	±0.1
Total systematic	±4.8	±5.0	+9.3/-8.5
Statistical	±6.8	±6.8	±4.6

Kinematic method requires

1st or 2nd highest-*p*_T **jet to be tagged to** obtain high purity of tt sample and measure the tagging efficiency with other jets in the events. *b*-jet efficiency (ε_b) are measured in single lepton channel in

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ob70 90-220 ±1.7 ±0.2 ±0.5 ±4.9 ±1.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{r} 90-220 \\ \pm 1.7 \\ \pm 0.2 \\ \pm 0.5 \\ \pm 4.9 \\ \pm 1.5 \\ \hline \hline 1.5 \end{array} $
Jet p_T [GeV]Source $20-90$ $90-220$ $20-90$ $90-220$ $20-90$ ε_b SV050 ± 1.3 ± 1.7 ± 1.2 ± 1.8 ± 1.2 ε_c SV050 ± 1.5 ± 2.3 ± 0.3 ± 0.2 ± 0.3 ε_l SV050 $\pm <0.1$ ± 4.0 ± 0.5 ± 0.6 ± 0.5 ε_c JetProb50/70 $ \pm 1.8$ ± 2.6 ± 2.8 $t\bar{t}$ normalisation ± 5.4 ± 5.2 ± 5.0 ± 5.4 ± 5.0 W+jets normalisation ± 2.8 ± 2.6 ± 2.7	90-220 ± 1.7 ± 0.2 ± 0.5 ± 4.9 ± 1.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	90-220 ± 1.7 ± 0.2 ± 0.5 ± 4.9 ± 1.5
$\begin{array}{c} \varepsilon_b \text{ SV050} \\ \varepsilon_c \text{ SV050} \\ \varepsilon_c \text{ SV050} \\ \varepsilon_l \text{ SV050} \\ \varepsilon_l \text{ JetProb50/70} \\ t\overline{t} \text{ normalisation} \\ W+jets \text{ normalisation} \\ \end{array} \begin{array}{c} \pm 1.3 \\ \pm 1.7 \\ \pm 1.7 \\ \pm 1.2 \\ \pm 1.5 \\ \pm 2.3 \\ \pm 0.3 \\ \pm 0.3 \\ \pm 0.3 \\ \pm 0.5 \\ \pm 0.6 \\ \pm 0.5 \\ \pm 0.6 \\ \pm 0.5 \\ \pm 0.6 \\ \pm 2.8 \\ \pm 2.6 \\ \pm 2.8 \\ \pm 2.6 \\ \pm 2.8 \\ \pm 2.6 \\ \pm 2.8 \\ \pm 2.5 \\ \pm 2.7 \\ \end{array}$	± 1.7 ± 0.2 ± 0.5 ± 4.9 ± 1.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\pm 0.2 \\ \pm 0.5 \\ \pm 4.9 \\ \pm 1.5 \\ \pm 5.1 \\ \pm 1.5 \\ \pm 5.1 \\ \pm 5.$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	± 0.5 ± 4.9 ± 1.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	±4.9 ±1.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	±1.5
$t\bar{t}$ normalisation ± 5.4 ± 5.2 ± 5.0 ± 5.4 ± 5.0 W +jets normalisation ± 2.8 ± 2.6 ± 2.8 ± 2.5 ± 2.7	1.5.1
W +jets normalisation ± 2.8 ± 2.6 ± 2.8 ± 2.5 ± 2.7	±0.1
	± 2.3
QCD normalisation $\pm 5.8 \pm 5.8 \pm 4.7 \pm 6.5 \pm 5.0$	± 6.4
Z+jets normalisation $\pm 0.1 \pm 0.2 \pm 0.1 \pm 0.2 \pm 0.1$	±0.2
Single top normalisation $\pm 0.1 \pm 0.1 \pm 0.1 \pm 0.1 \pm 0.1$	± 0.1
W+jets flavour fractions $\pm 4.1 \pm 3.4 \pm 4.1 \pm 3.4 \pm 3.1$	±1.9
QCD flavour fractions $\pm 0.9 \pm 0.7 \pm 1.1 \pm 0.4 \pm 0.9$	± 0.8
Jet energy scale and resolution $\pm 4.3 \pm 0.3 \pm 4.6 \pm 0.5 \pm 4.8$	±0.1
Jet reconstruction $\pm 1.2 \pm 0.6 \pm 1.2 \pm 0.7 \pm 1.3$	±0.7
Lepton trigger $\pm 1.3 \pm 0.9 \pm 1.3 \pm 0.9 \pm 1.3$	±0.8
Lepton momentum scale and resolution $\pm 1.9 \pm 1.3 \pm 1.9 \pm 1.3 \pm 3.0$	± 1.1
Lepton reconstruction and identification $\pm 1.4 \pm 0.9 \pm 1.4 \pm 0.9 \pm 1.3$	±0.8
Generator $\pm 0.6 \pm 2.3 \pm 0.6 \pm 2.2 \pm 0.6$	±2.0
Parton shower $\pm 0.1 \pm 0.5 \pm 0.1 \pm 0.5 \pm 0.2$	±0.6
ISR/FSR $\pm 2.0 \pm 4.6 \pm 1.9 \pm 4.5 \pm 2.0$	± 4.1
Pileup ± 1.3 $\pm < 0.1$ ± 1.2 ± 0.4 ± 1.2	±0.5
Luminosity $\pm 0.2 \pm 0.2 \pm 0.2 \pm 0.2 \pm 0.2$	±0.2
Total systematic $\pm 11.8 \pm 11.9 \pm 11.2 \pm 11.9 \pm 11.6$	±12.1
Statistical ±11.1 ±13.1 ±11.6 ±12.4 ±9.3	± 11.7

220

200

180⊢

160⊢

140ŀ

120ŀ

- \triangleright $\varepsilon_b / f_b, \varepsilon_c / f_c, \text{ and } \varepsilon_l / f_l \text{ are the }$ efficiencies/fractions of b-, c-, light-, which are estimated from MC except for ε_b .
- **ε**_{QCD} / **f**_{QCD} are the efficiency/fractions of QCD-jets, which are estimated from data.
- N/Ntagged are the number of pretagged tagged) jets

b-jet efficiencies vs jet pr

Statistical uncertainty will be smaller with much more sample collected by ATLAS. Systematic uncertainty could also reduced by a better background estimation expected near future. Stay tuned!

International Europhysics Conference on High Energy Physics Grenoble, Rhône-Alpes France July 21-27 2011

European Physical Society æ **HEP 20**

Deutsche Forschungsgemeinschaft DFG

