Angular analysis of the decay $B_d \rightarrow K^* \mu^+ \mu^-$ at LHCb

22nd July 2011 Mitesh Patel (Imperial College London)

Introduction

- Flavour changing neutral current decay (→loop), described by 3 angles (θ_I, φ, θ_K) and di-µ invariant mass q²
- Sensitive to magnetic and vector and axial semi-leptonic penguin operators
- Many observables where hadronic uncertainties cancel
 - Forward-backward asymmetry A_{FB} of θ₁ distribution (zero-crossing point)
- Pre-EPS measurements from Babar, Belle and CDF

Strategy

- Select signal events
- Correct for the effect of the reconstruction and selection requirements – "acceptance effect" – using simulation
 - Model independent correction
 - Validate by performing angular analysis of $B_d \rightarrow K^* J/\psi$ control channel, where physics parameters known from elsewhere
 - Check simulation with a range of control channels
- Fit for observables

- First measurements from LHCb from 309 pb⁻¹ data taken in 2011
- Focus on theoretically clean angular observables e.g. $A_{FB},\,F_L$ and $d\Gamma/dq^2$

Selection

- Selection:
 - Remove cc̄ resonances
 - 2946 <m_{μμ}< 3176 MeV/c²
 - 3586 <m_{μμ}< 3776 MeV/c²
 - Treat peaking backgrounds with a specific set of criteria (→ residual backgrounds ~3% of signal)
 - Combinatorial backgrounds reduced with a Boosted Decision Tree (BDT) selection
- Use Belle q² binning and an (overlapping) 1<q²<6 GeV²/c⁴ bin favoured by theorists

Boosted Decision Tree

- Train BDT on 2010 data i.e. totally independent of 2011 data sample
 - Signal sample $B_d \rightarrow K^* J/\psi$ data
 - − Bkgrd sample − B_d →K^{*}µµ mass sideband events
- Resulting selection
 - Background-to-signal ratio ~0.3 Comparable to B-factories
 - Does not induce further biases in cos θ_L , cos θ_K and q² cf reconstruction

biases introduced are primarily from detector geometry – easy to model

Acceptance Correction

- Correct angular and q² distributions for the effect of the detector and selection
- To be model independent, use an eventby-event weight which is determined on the basis of the θ_L , θ_K , q^2 of the signal candidates that are found
- Simulation quality verified with range of control channels (B_d→K*J/ψ, J/ψ→μμ, D*→D⁰(Kπ)π)
 - Tracking efficiency
 - Hadron (mis-)identification probabilities
 - Muon (mis-)identification
 - Overall momentum and η distributions

Weight depends on $\cos \theta_{K}$

Vast majority of events have weights ~1

Fit Procedure and Validation

- Simultaneous fit to the 1d projections of cos $\theta_L,$ cos θ_K and $m_{K\pi\mu\mu}$ in bins of q^2
 - Events weighted according to acceptance correction
 - Use Bayesian approach to construct stat. errors with flat
 prior over physical region
 - Systematics effects are very small and can be reduced with further data
 - Cross-check with a simple counting approach (don't use angular distributions)
- Validate fitting on $B_d {\rightarrow} K^* J/\psi$
 - A_{FB} consistent with zero, as expected
 - s-wave contribution induces an asymmetry in cos θ_{K} distribution, $A_{FB}{}^{K}$
 - Acceptance correction makes $\cos \theta_{K}$ asymmetric \rightarrow symmetric
 - Variation of $A_{FB}{}^{K}$ with $m_{K\pi}$ matches BaBar data(**) across $m_{K\pi}$ range

910<m_{кл}<980 MeV

A_{FB} Measurement

Theory predictions from C.Bobeth *et al.*, arXiv:1105.0376v2

A_{FB} Measurement

•

F_L Measurement

Theory predictions from C.Bobeth *et al.*, arXiv:1105.0376v2

F₁ Measurement

•

$d\Gamma/dq^2$

Theory predictions from C.Bobeth et al., arXiv:1105.0376v2

Conclusions

- Angular analysis of $B_d \rightarrow K^* \mu^+ \mu^-$
 - A_{FB} , F_L and $d\Gamma/dq^2$ measured as function of q^2 with 309pb⁻¹ of LHCb data taken in 2011
 - All three measurements show good agreement with the SM, no evidence for a large asymmetry in the low q² region as hinted at by previous experiments
 - Errors smaller than previous measurements and are statistically dominated

Backup

Search for $B^+ \rightarrow \pi^- \mu^+ \mu^+$ and $B^+ \rightarrow K^- \mu^+ \mu^+$

- Lepton Flavour Violating decays
 - $(\Delta L=2)$ strictly forbidden in SM
 - Sterile Majorana v of mass O(1GeV/c²) could enhance BR significantly
- Analysis Strategy
 - Tight selection, use 'opposite sign' B⁺→K⁻µ⁺µ⁻ decays as a proxy for signal
 - Normalise to $B^+ \rightarrow J/\psi K^+$
 - Detector performance measured from control channels used to estimate peaking bkgrd
- Observed signal / background
 - <0.3 (0.1) bkgrd evts expected in $\pi\mu\mu$ (K $\mu\mu$)
 - Zero events observed in both signal and mass sideband regions

Search for $B^+ \rightarrow \pi^- \mu^+ \mu^+$ and $B^+ \rightarrow K^- \mu^+ \mu^+$

- Lepton Flavour Violating decays
 - $(\Delta L=2)$ strictly forbidden in SM
 - Sterile Majorana v of mass O(1GeV/c²) could enhance BR significantly
- Analysis Strategy
 - − Tight selection, use 'opposite sign' $B^+ \rightarrow K^- \mu^+ \mu^-$ decays as a proxy for signal
 - Normalise to $B^+ \rightarrow J/\psi K^+$
 - Detector performance measured from control channels used to estimate peaking bkgrd
- Observed signal / background
 - <0.3 (0.1) bkgrd evts expected in $\pi\mu\mu$ (Kµµ)
 - Zero events observed in both signal and mass sideband regions

M_{K⁺ J/ψ} (MeV / c²)

- Search for $B^+ \rightarrow \pi^- \mu^+ \mu^+$, $B^+ \rightarrow K^- \mu^+ \mu^+$
 - Observed limit @ 90% CL
 - BR(B⁺ \rightarrow K⁻ μ ⁺ μ ⁺) < 4.3×10⁻⁸
 - BR(B⁺ $\rightarrow \pi^{-}\mu^{+}\mu^{+}) < 4.5 \times 10^{-8}$
 - Factor 40(30) improvement cf previous best limit (CLEO)

Peaking Backgrounds

- A number of vetos are introduced to deal with peaking bkgrds e.g.
 - $B_s \rightarrow \phi \mu \mu$ with $K \rightarrow \pi$
 - $B_d \rightarrow K^* J/\psi$ with $\pi(K) \rightarrow \mu$ and $\mu \rightarrow \pi(K)$ swaps [evades J/ψ vetos]
 - $B_d \rightarrow K^* \mu \mu$ with $K \rightarrow \pi$ and $\pi \rightarrow K$

Completely negligible impact on signal

• Residual background (after application of BDT selection also) :

Source	Quantity	Signal Loss (%)
$B_s \to \phi \mu^+ \mu^-$	2.3	0.1
$B^0 \to K^{*0} J/\psi$	0.7	0.1
$B^0 \to K^{*0} \mu^+ \mu^-$	1.2	0.3
Total	4.2	0.5

 \rightarrow residual background is ~3% of signal – only ~0.7% of this can affect asymmetry - $B_d \rightarrow K^* \mu \mu$ background flips B and B

Likelihoods

Likelihoods

Errors and Physical Region

- Angular equations \rightarrow pdf negative if $A_{FB} < 3/4(1-F_L)$
- Statistical errors
 - Use Bayesian approach to construct errors with flat prior over physical region
 - The central value quoted is that with the largest likelihood
 - Errors estimated by performing a profilelikelihood scan over the plane and integrating a 68% CL region of the likelihood distribution
- Systematics effects are small and can be reduced with further data

