Angular analysis of the decay $B_d \rightarrow K^* \mu^+ \mu^-$ at LHCb

22nd July 2011
Mitesh Patel
(Imperial College London)
Introduction

- Flavour changing neutral current decay (\rightarrow loop), described by 3 angles (θ_l, ϕ, θ_K) and di-μ invariant mass q^2
- Sensitive to magnetic and vector and axial semi-leptonic penguin operators
- Many observables where hadronic uncertainties cancel
 - Forward-backward asymmetry A_{FB} of θ_l distribution (zero-crossing point)
- Pre-EPS measurements from Babar, Belle and CDF

BABAR: PRL 102, 091803 (2009); CDF: Note 10047 (2010); Belle: PRL 103, 171801 (2009)
Strategy

• Select signal events
• Correct for the effect of the reconstruction and selection requirements – “acceptance effect” – using simulation
 – Model independent correction
 – Validate by performing angular analysis of $B_d \rightarrow K^* J/\psi$ control channel, where physics parameters known from elsewhere
 – Check simulation with a range of control channels
• Fit for observables

• First measurements from LHCb from 309 pb^{-1} data taken in 2011
• Focus on theoretically clean angular observables e.g. A_{FB}, F_L and $d\Gamma/dq^2$
Selection

- Selection:
 - Remove c\bar{c} resonances
 - $2946 < m_{\mu\mu} < 3176$ MeV/c2
 - $3586 < m_{\mu\mu} < 3776$ MeV/c2
 - Treat peaking backgrounds with a specific set of criteria
 (\rightarrow residual backgrounds \sim3% of signal)
 - Combinatorial backgrounds reduced with a Boosted Decision Tree (BDT) selection

- Use Belle q^2 binning and an (overlapping) $1 < q^2 < 6$ GeV2/c4 bin favoured by theorists
Boosted Decision Tree

• Train BDT on 2010 data i.e. totally independent of 2011 data sample
 – Signal sample – $B_d \rightarrow K^* J/\psi$ data
 – Bkgrd sample – $B_d \rightarrow K^* \mu\mu$ mass sideband events

• Resulting selection
 – Background-to-signal ratio ~0.3
 Comparable to B-factories
 – Does not induce further biases in $\cos\theta_L$, $\cos\theta_K$ and q^2 cf reconstruction
 biases introduced are primarily from detector geometry – easy to model
Acceptance Correction

- Correct angular and q^2 distributions for the effect of the detector and selection

- To be model independent, use an event-by-event weight which is determined on the basis of the θ_L, θ_K, q^2 of the signal candidates that are found

- Simulation quality verified with range of control channels ($B_d \rightarrow K^* J/\psi$, $J/\psi \rightarrow \mu\mu$, $D^* \rightarrow D^0(K\pi)\pi$)
 - Tracking efficiency
 - Hadron (mis-)identification probabilities
 - Muon (mis-)identification
 - Overall momentum and η distributions

Weight depends on $\cos \theta_K$

Vast majority of events have weights ~ 1
Fit Procedure and Validation

• Simultaneous fit to the 1d projections of $\cos \theta_L$, $\cos \theta_K$ and $m_{K\pi\mu\mu}$ in bins of q^2
 - Events weighted according to acceptance correction
 - Use Bayesian approach to construct stat. errors with flat prior over physical region
 - Systematics effects are very small and can be reduced with further data
 - Cross-check with a simple counting approach (don’t use angular distributions)

• Validate fitting on $B_d \to K^*J/\psi$
 - A_{FB} consistent with zero, as expected
 - s-wave contribution induces an asymmetry in $\cos \theta_K$ distribution, A_{FB}^K
 - Acceptance correction makes $\cos \theta_K$ asymmetric→symmetric
 - Variation of A_{FB}^K with $m_{K\pi}$ matches BaBar data(**) across $m_{K\pi}$ range

(**) BABAR: PRD 76, 031102 (2007)
$B_d \rightarrow K^{*}\mu\mu$ yields

$0.00 < q^2 < 2.00 \text{ GeV}^2/c^4$

$2.00 < q^2 < 4.30 \text{ GeV}^2/c^4$

$4.30 < q^2 < 8.68 \text{ GeV}^2/c^4$

$10.09 < q^2 < 12.86 \text{ GeV}^2/c^4$

$14.18 < q^2 < 16.00 \text{ GeV}^2/c^4$

$16.00 < q^2 < 19.00 \text{ GeV}^2/c^4$
$B_d \rightarrow K^{*\mu\mu}$ yields

<table>
<thead>
<tr>
<th>q^2 (GeV2)</th>
<th>n_{stg}</th>
<th>n_{bkg}</th>
<th>significance (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 < q^2 < 2$</td>
<td>40.9 ± 7.5</td>
<td>14.4 ± 8.5</td>
<td>7.7</td>
</tr>
<tr>
<td>$2 < q^2 < 4.3$</td>
<td>23.3 ± 6.2</td>
<td>15.3 ± 8.6</td>
<td>4.9</td>
</tr>
<tr>
<td>$4.3 < q^2 < 8.68$</td>
<td>93.3 ± 11.3</td>
<td>30.0 ± 12.5</td>
<td>11.7</td>
</tr>
<tr>
<td>$10.09 < q^2 < 12.9$</td>
<td>57.3 ± 8.8</td>
<td>18.6 ± 9.7</td>
<td>9.3</td>
</tr>
<tr>
<td>$14.18 < q^2 < 16$</td>
<td>42.2 ± 6.8</td>
<td>3.6 ± 4.7</td>
<td>10.1</td>
</tr>
<tr>
<td>$16 < q^2 < 19$</td>
<td>48.1 ± 7.8</td>
<td>6.7 ± 6.4</td>
<td>9.2</td>
</tr>
<tr>
<td>$1 < q^2 < 6$ GeV2</td>
<td>70.0 ± 10.2</td>
<td>$32. \pm 3.2$</td>
<td>9.4</td>
</tr>
<tr>
<td>Full</td>
<td>302.3 ± 20.1</td>
<td>91.0 ± 5.4</td>
<td>–</td>
</tr>
</tbody>
</table>
A_{FB} Measurement

Theory predictions from C.Bobeth et al.,
arXiv:1105.0376v2
In $1<q^2<6$ GeV$^2/c^4$ bin,
- $A_{FB} = -0.10 \pm 0.14 \pm 0.05$
 c.f. Belle $0.26^{+0.27}_{-0.30} \pm 0.07$

Theory predictions from C.Bobeth et al., arXiv:1105.0376v2
F_L Measurement

Theory predictions from C. Bobeth et al., arXiv:1105.0376v2
In $1 < q^2 < 6 \text{ GeV}^2/\text{c}^4$ bin,

- $F_L = 0.57^{+0.11}_{-0.10} \pm 0.03$
- c.f. Belle $0.67 \pm 0.23 \pm 0.07$

Theory predictions from C. Bobeth et al., arXiv:1105.0376v2
Theory predictions from C.Bobeth et al.,
arXiv:1105.0376v2
Theory predictions from C. Bobeth et al., arXiv:1105.0376v2
Conclusions

• Angular analysis of $B_d \rightarrow K^* \mu^+ \mu^-$
 – A_{FB}, F_L and $d\Gamma/dq^2$ measured as function of q^2 with 309pb$^{-1}$ of LHCb data taken in 2011
 – All three measurements show good agreement with the SM, no evidence for a large asymmetry in the low q^2 region as hinted at by previous experiments
 – Errors smaller than previous measurements and are statistically dominated
Backup
Search for $B^+ \rightarrow \pi^- \mu^+ \mu^+$ and $B^+ \rightarrow K^- \mu^+ \mu^+$

- Lepton Flavour Violating decays
 - $(\Delta L=2)$ strictly forbidden in SM
 - Sterile Majorana ν of mass $O(1\text{GeV}/c^2)$ could enhance BR significantly

- Analysis Strategy
 - Tight selection, use ‘opposite sign’ $B^+ \rightarrow K^- \mu^+ \mu^-$ decays as a proxy for signal
 - Normalise to $B^+ \rightarrow J/\psi K^+$
 - Detector performance measured from control channels used to estimate peaking background

- Observed signal / background
 - <0.3 (0.1) background events expected in $\pi\mu\mu$ ($K\mu\mu$)
 - Zero events observed in both signal and mass sideband regions
Search for $B^+ \rightarrow \pi^+ \mu^+ \mu^+$ and $B^+ \rightarrow K^- \mu^+ \mu^+$

- Lepton Flavour Violating decays
 - $(\Delta L = 2)$ strictly forbidden in SM
 - Sterile Majorana ν of mass $O(1\text{GeV}/c^2)$ could enhance BR significantly

- Analysis Strategy
 - Tight selection, use ‘opposite sign’ $B^+ \rightarrow K^- \mu^+ \mu^-$ decays as a proxy for signal
 - Normalise to $B^+ \rightarrow J/\psi K^+$
 - Detector performance measured from control channels used to estimate peaking bkgrd

- Observed signal / background
 - <0.3 (0.1) bkgrd evts expected in $\pi \mu \mu$ ($K \mu \mu$)
 - Zero events observed in both signal and mass sideband regions

Observed limit @ 90% CL
$BR(B^+ \rightarrow K^- \mu^+ \mu^+) < 4.3 \times 10^{-8}$
$BR(B^+ \rightarrow \pi^+ \mu^+ \mu^+) < 4.5 \times 10^{-8}$

Factor 40(30) improvement cf previous best limit (CLEO)
• Search for $B^+ \rightarrow \pi^- \mu^+ \mu^+$, $B^+ \rightarrow K^- \mu^+ \mu^+$

 – Observed limit @ 90% CL
 • $\text{BR}(B^+ \rightarrow K^- \mu^+ \mu^+) < 4.3 \times 10^{-8}$
 • $\text{BR}(B^+ \rightarrow \pi^- \mu^+ \mu^+) < 4.5 \times 10^{-8}$

 – Factor 40(30) improvement cf previous best limit (CLEO)
Peaking Backgrounds

• A number of vetos are introduced to deal with peaking bkgrds e.g.
 – $B_s \rightarrow \phi \mu^+ \mu^-$ with $K \rightarrow \pi$
 – $B_d \rightarrow K^*J/\psi$ with $\pi(K) \rightarrow \mu$ and $\mu \rightarrow \pi(K)$ swaps [evades J/ψ vetos]
 – $B_d \rightarrow K^*\mu\mu$ with $K \rightarrow \pi$ and $\pi \rightarrow K$

 Completely negligible impact on signal

• Residual background (after application of BDT selection also):

<table>
<thead>
<tr>
<th>Source</th>
<th>Quantity</th>
<th>Signal Loss (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_s \rightarrow \phi \mu^+ \mu^-$</td>
<td>2.3</td>
<td>0.1</td>
</tr>
<tr>
<td>$B^0 \rightarrow K^*0J/\psi$</td>
<td>0.7</td>
<td>0.1</td>
</tr>
<tr>
<td>$B^0 \rightarrow K^*0\mu^+ \mu^-$</td>
<td>1.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Total</td>
<td>4.2</td>
<td>0.5</td>
</tr>
</tbody>
</table>

→ residual background is ~3% of signal – only ~0.7% of this can affect asymmetry - $B_d \rightarrow K^*\mu\mu$ background flips B and B
Likelihoods

$1 < q^2 < 6 \text{ GeV}^2/c^4$
Likelihoods

0 < q^2 < 2 GeV^2/c^4

2 < q^2 < 4.3 GeV^2/c^4

4.3 < q^2 < 8.68 GeV^2/c^4

10.09 < q^2 < 12.9 GeV^2/c^4

14.18 < q^2 < 16 GeV^2/c^4

16 < q^2 < 19 GeV^2/c^4
Errors and Physical Region

• Angular equations → pdf negative if $A_{FB} < 3/4(1-F_L)$

• Statistical errors
 – Use Bayesian approach to construct errors with flat prior over physical region
 • The central value quoted is that with the largest likelihood
 • Errors estimated by performing a profile-likelihood scan over the plane and integrating a 68% CL region of the likelihood distribution

• Systematics effects are small and can be reduced with further data