

Reactor Antineutrinos :

Status of θ₁₃ experiments & Reactor Antineutrino Anomaly

Th. Lasserre (CEA-Saclay, Irfu APC & SPP) EPS HEP 2011

CEA DSM Irfu

- Electron antineutrinos emitted through Decays of Fission Products of ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu
- Nuclear reactors $\therefore 1 \text{ GW}_{\text{th}} \Leftrightarrow 2 \ 10^{20} \ \bar{\nu}/\text{s}$
- Neutrino Luminosity : $\,N_{ar{
 u}}=\gamma(1+k)P_{
 m th}$
 - γ : reactor constant
 - k : fuel evolution correction up to 10%
- Common Detection
 - Inverse Beta-Decay reaction (xsec: σ_{V-A})

 $\bar{\nu}_e + p \longrightarrow e^+ + n$

- Threshold 1.8 MeV. E_v extend to 10 MeV
- Measure anti-v_e of interaction rate

$$n_{\nu} = \frac{1}{4\pi R^2} \frac{P_{\rm th}}{\langle E_f \rangle} N_p \varepsilon \sigma_f \longrightarrow \sigma_f^{\rm meas.} = \frac{4\pi R^2 n_{\nu}^{\rm meas.}}{N_p \varepsilon} \frac{\langle E_f \rangle}{P_{\rm th}}$$

• Comparison of $\sigma_{\rm f}$ to prediction

$$\sigma_f^{\rm pred.} = \int_0^\infty \phi_f^{\rm pred.} (E_{\nu}) \sigma_{\rm V-A}(E_{\nu}) dE_{\nu}$$

CEA DSM Irfu T. Lasserre

 $\Delta m_{atm}^2 = 3.0 \ 10^{-3} \ eV^2$

L [m] ($\langle E_v \rangle$ = 3 MeV)

Similar Detector Designs

New 4-region large detector concept from Double Chooz Coll. (2003)

http://bama.ua.edu/~busenitz/rnu2003_talks/lasserre1.doc http://bama.ua.edu/~busenitz/rnu2003_talks/suekane1.pdf

Outer Veto: plastic scintillator strips (400 mm)

v-Target: 10,3 m³ scintillator doped with 1g/l of Gd compound in an acryclic vessel (8 mm)

γ-Catcher: 22,3 m³ scintillator in an acrylic vessel (12 mm)

• **Buffer:** 110 m³ of mineral oil in a stainless steel vessel (3 mm) viewed by 390 PMTs

Inner Veto: 90m³ of scintillator in a steel vessel equipped with 78 PMTs

Veto Vessel (10mm) & Steel Shielding (150 mm)

Status of RENO

- Site: Youngwang, Korea
 Tunnel + halls ready
 6 cores, 16 GW (aligned)
- Two 20 ton (Gd-LS) detectors
 Near: 20 tons 350 m 200 mwe
 Far: 20 tons 1.4 km 700 mwe

- Sensitivity

 0.5% systematic error
 sin²(2θ₁₃) < 0.02 (90% C.L.), 3 y
- Status

 γ

Two detector almost filled Data taking by August 2011

- Both near and far detectors are filled with Gd-LS, LS & Mineral Oil
- Veto water filling will be completed by the end of July 2011.

Target

Gamma Catcher

Status of Daya Bay

- Site: Daya Bay Plant (11.6+6 GW_{th}), China Near: 1 km tunnel + laboratory
 Far: 2 km tunnel + laboratory
- 8x20 tons detector modules (Gd-LS)
 Near: 4x20 tons 360-500 m 200 mwe
 Far: 4x20 tons 1.6-1.9 km 1000 mwe
 Movable detector concept (in water pools)
- Expected Sensitivity

0.36% systematic error (relative) 5 years, $\sin^2(2\theta_{13}) < 0.01$ (90% C.L.)

Status

2 near det. running by summer 20118 detectors to run in summer 2012

Status of Daya Bay (see Poster)

CEA DSM Irfu T. Lasserre

(e)

Double Chooz Sites (France)

œ

Near Laboratory Excavation

- Started Apr. 2011
- Lab delivery Apr. 2012
- Near detector End 2012
- Baseline ~ 400 m
- Overburden ~120 mwe

œ

Far Detector Construction 2008-10

Challenging "4-layer vessel" detector concept, invented by Double Chooz in 2002 has proved to be possible

CEA DSM Irfu T. Lasserre

- >70 full days of physics (Physics Run Eff. 75%)
- Trigger rate 120 Hz Trigger threshold < 0.6 MeV</p>
- Calibration runs 10% of the time (light injection through embedded fiber)
- Outer Veto Muon & Source Calibration Deployment being commissioned

Muon & Michel Electron Data

Muons

- Δt time between two muon events (ms)
- ~40Hz of muons tagged by Inner Veto
- ~10Hz of muons tagged by Inner Detector

Michel Electrons

- Time since stopped muon (µs) + Energy Selection Criteria
- Stat. error only
- Delayed coincidence well tagged

Neutron Data

• We saw instrumental light from PMTs. These noise events are under control.

Singles rates

- after vetoing muon-correlated events
- ~10 Hz in [0.7, 12] MeV \rightarrow ~DC proposal
- <0.01 Hz in [6, 12] MeV \rightarrow < $\frac{1}{2}$ DC proposal
- Promising sign for low Accidental rate
- Neutron-capture as expected
 - on Gd (Target) & H (T+GC)

→These data support DC should have a clean set of neutrino candidates

- Correlated backgrounds under study
- Neutrino oscillation analysis on-going
- T2K's central values to be addressed at 99% CL with 2011 data

The Reactor Antineutrino anomaly

Phys. Rev. D83, 073006, 2011

http://irfu.cea.fr/en/Phocea/Vie_des_labos/Ast/ast_visu.php?id_ast=3045

CEA DSM Irfu T. Lasserre

- Accurate e⁻ measurements, ILL reactor (1980-89):
 - Irradiation of ²³⁵U, ²³⁹Pu, ²⁴¹Pu foils in intense n_{th} flux from the ILL core
 - High resolution magn. spectrometer, normalization uncertainty of 1.8%
- Thousands of β-branches involved...
- From electron to neutrino spectra: need a conversion
 - Old Method:
 - Fit integral e⁻ spectrum with a sum of 30 effective β-branches
 - Conversion of the effective branches to v spectra
 - Effective correction on the v-spectra (A_{C,W})
 - New Method (Phys. Rev. C83, 054615, 2011)
 - Conversion with "true" distribution of β -branches reproducing >90% of ILL e⁻ data + five effective branches to the remaining 10%
 - Net 3% upward shift in energy-averaged neutrino fluxes with respect to old v-spectrum for ²³⁵U, ²³⁹Pu, ²⁴¹Pu (confirmed by arXiv:1106.0687)

 10% of fission products have a β-decay life-time long enough to keep accumulating after several days

- ILL electron reference spectra : 12 hours to 1.8 days irradiation time
- Neutrino reactor experiments irradiation time >> months

 Correction included by default in our new reference model

Not included before CHOOZ

 Relative change of v-spectrum w.r.t. infinite irradiation time

- ν-flux: ²³⁵U +2.5%, ²³⁹Pu +3.1%, ²⁴¹Pu +3.7%, ²³⁸U +9.8% (σ_f^{pred} **7**)
- Off-equilibrium corrections now included $(\sigma_f^{\text{pred}} \nearrow)$
- Neutron lifetime decrease by a few % ($\sigma_{\rm f}^{\rm pred}$ 7) $\sigma_{\rm V-A}(E_{\nu}) \propto 1/\tau_n$
- Slight evolution of the phase space factor ($\sigma_{f}^{pred} \rightarrow$)
- Slight evolution of the energy per fission per isotope ($\sigma_{f}^{pred} \rightarrow$)

• Burnup dependence:
$$\sigma_f^{pred} = \sum_k f_k \sigma_{f,k}^{pred} \quad (\sigma_f^{pred} \rightarrow)$$

_		old [3]	new	new/old
New Results:	$\sigma^{pred}_{f,^{235}U}$	$6.39{\pm}1.9\%$	$6.61{\pm}2.11\%$	+3.4%
	$\sigma^{pred}_{f,239Pu}$	$4.19{\pm}2.4\%$	$4.34{\pm}2.45\%$	+3.6%
	$\sigma^{pred}_{f,238_{U}}$	$9.21{\pm}10\%$	$10.10{\pm}8.15\%$	+9.6%
	$\sigma_{f,^{241}Pu}^{pred}$	$5.73{\pm}2.1\%$	$5.97{\pm}2.15\%$	+4.2%

19 Experimental Results below 100 m

Measured cross sections are taken at their face values

CEA DSM Irfu T. Lasserre

19 Experimental Results Revisited (L<100m)

#	result	Det. type	$ au_n$ (s)	235 U	²³⁹ Pu	238 U	²⁴¹ Pu	old	new	$\operatorname{err}(\%)$	$\operatorname{corr}(\%)$	L(m)
1	Bugey-4	$^{3}\text{He}+\text{H}_{2}\text{O}$	888.7	0.538	0.328	0.078	0.056	0.987	0.942	3.0	3.0	15
2	ROVNO91	$^{3}\text{He}+\text{H}_{2}\text{O}$	888.6	0.614	0.274	0.074	0.038	0.985	0.940	3.9	3.0	18
3	Bugey-3-I	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.988	0.946	4.8	4.8	15
4	Bugey-3-II	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.994	0.952	4.9	4.8	40
5	Bugey-3-III	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.915	0.876	14.1	4.8	95
6	Goesgen-I	3 He+LS	897	0.620	0.274	0.074	0.042	1.018	0.966	6.5	6.0	38
7	Goesgen-II	³ He+LS	897	0.584	0.298	0.068	0.050	1.045	0.992	6.5	6.0	45
8	Goesgen-II	³ He+LS	897	0.543	0.329	0.070	0.058	0.975	0.925	7.6	6.0	65
9	ILL	³ He+LS	889	$\simeq 1$		—	—	0.832	0.802	9.5	6.0	9
10	Krasn. I	³ He+PE	899	$\simeq 1$			—	1.013	0.936	5.8	4.9	33
11	Krasn. II	$^{3}\text{He}+\text{PE}$	899	$\simeq 1$		—		1.031	0.953	20.3	4.9	92
12	Krasn. III	$^{3}\text{He}+\text{PE}$	899	$\simeq 1$			—	0.989	0.947	4.9	4.9	57
13	SRP I	Gd-LS	887	$\simeq 1$			— I	0.987	0.952	3.7	3.7	18
14	SRP II	Gd-LS	887	$\simeq 1$			—	1.055	1.018	3.8	3.7	24
15	ROVNO88-1I	³ He+PE	898.8	0.607	0.277	0.074	0.042	0.969	0.917	6.9	6.9	18
16	ROVNO88-2I	$^{3}\text{He}+\text{PE}$	898.8	0.603	0.276	0.076	0.045	1.001	0.948	6.9	6.9	18
17	ROVNO88-1S	Gd-LS	898.8	0.606	0.277	0.074	0.043	1.026	0.972	7.8	7.2	18
18	ROVNO88-2S	Gd-LS	898.8	0.557	0.313	0.076	0.054	1.013	0.959	7.8	7.2	25
19	ROVNO88-3S	Gd-LS	898.8	0.606	0.274	0.074	0.046	Q. <u>990</u>	<u>0.9</u> 38	7.2	7.2	18

red

Experiments correlation matrix

• Main pink color comes from the 2% systematic on ILL β-spectra normalization uncertainty

The experiment block correlations come from identical detector, technology or neutrino source

The reactor antineutrino anomaly

$$\chi^2 = \left(r - \overrightarrow{\mathbf{R}}\right)^T W^{-1} \left(r - \overrightarrow{\mathbf{R}}\right)$$

Best fit : μ = 0.943±0.023 (χ² = 19.6/19)

- Deviation from unity
 - Naïve Gaussian : 99.3% C.L.
 - Toy MC: 98.6% C.L. (10⁶ trials)

No hidden covariance

• 18% of Toy MC have χ^2_{min} <19.6

At least three alternatives:

- Wrong prediction of v-spectra ?
- Bias in all experiments ?
- New physics at short baselines: Mixing with $4^{th} v$ -state ? θ_{new} and Δm^2_{new}

The 1981 ILL Grenoble neutrino experiment

- ILL Reactor : Almost pure ²³⁵U ; Compact core
- Detector 8.8 m from core
- Reanalysis in 1995 by part of the collaboration to account for overestimation of flux at ILL reactor by 10%... Affects the rate only

Combined Reactor Rate+Shape contours

Including original Bugey-3 & ILL Energy Spectra constraints

 \mathcal{A}

Implication of the reactor antineutrino anomaly for θ_{13} search at reactors

Implication for θ_{13} at 1-2 km baselines

- The choice of normalization is crucial for reactor experiments looking for θ_{13} without near detector

 $\sigma_{\rm f}^{\rm pred,new}\,$: new prediction of the antineutrino fluxes

 σ_{f}^{ano} or σ_{f}^{bugey} : experimental cross section

Single Baseline Experiments: Normalization Experiments with baselines > 500 m How do you normalize the expected flux, knowing the fuel composition? If near + far detector, not an issue anymore Use $\sigma_{f}^{\text{pred},\text{new}} = 6.102 \ 10^{-43} \text{ cm}^2/\text{fission} \pm 2.7\%$ $\sigma_{\rm f}^{\rm pred}$ Use $\sigma_{f}^{\text{pred,old}}$ =5.850 10⁻⁴³ cm²/fission ± 2.7% Choices Use σ_{f}^{exp} Bugey-4=5.750 10⁻⁴³ cm²/fission ± 1.4% Chooz's choice: use lower error (total 2.7% instead of 3.3%) Double Chooz Phase-I plans using or, exp, bugey4 σ_{f}^{exp}

Use $\langle \sigma_f^{exp} \rangle = \sigma_f^{ano} = 5.750 \ 10^{-43} \ cm^2/fission \pm 1\% + ?\%$ (syst.) Average over short-baseline expts.

CHOOZ reanalysis

- The choice of σ_f changes the limit on θ_{13}
- Chooz original choice was σ_f^{exp} from Bugey-4 with low error
- If $\sigma_f^{\text{pred,new}}$ is used, limit is worse by factor of 2
- If σ_f^{ano} is used with 2.7%, we obtain the original limit

Reanalysis of KamLAND's 2010 results

arXiv:1009.4771v2 [hep-ex]

Systematics

	Detector-related	(%)	Reactor-related (%)	
$\overline{\Delta m^2_{21}}$	Energy scale	1.8 / 1.8	$\overline{\nu}_e$ -spectra [<u>31</u>]	0.6/0.6
Rate	Fiducial volume	1.8 / 2.5	$\overline{\nu}_e$ -spectra	2.4/2.4
	Energy scale	1.1 / 1.3	Reactor power	2.1 / 2.1
	$L_{cut}(E_{\rm p})$ eff.	0.7 / 0.8	Fuel composition	1.0 / 1.0
	Cross section	0.2/0.2	Long-lived nuclei	0.3 / 0.4
	Total	2.3/3.0	Total	3.3/3.4

Reproduced KamLAND spectra within 1% in [1-6] MeV range

CHOOZ and KamLAND combined limit on θ_{13}

Normalization with $\sigma_{f}^{pred,new}$

Normalization using σ_{f}^{ano}

Constraint on θ₁₃ with 1-baseline experiment prediction dependent (Arxiv:1103:0734)

- Proven method : using $\sigma_{f}^{bugey-4}$ (Eur. Phys. J. C27, 331-374 (2003)) \rightarrow DC-phase1
- Multi-detector experiments are not affected

Possible Experimental Tests

CER NUCIFER Test of the Reactor Neutrino Anomaly

- Osiris Research Reactor : Core Size: 57x57x60 cm
- Nucifer Detector Size : 1.2x0.7m (850l)
- **Baseline :** <L>=7.0 m, σ =0.3 m \rightarrow eV² oscillations are not washed out
- Folding Nucifer Geant4 Monte Carlo detector response
- Δm² = 2.4 eV² & sin²(2θ)=0.15
- No backgrounds. Thus to be taken with a grain of salt ...

A ¹⁴⁴Ce kCi Anti-neutrino Source Experiment

- A 50 kCi anti-v source (10 g of ¹⁴⁴Ce) in the middle of a large LS detector
- Inside a thick 35 cm W-Cu shielding \rightarrow background free
- Energy-dependent oscillating pattern in event spatial distribution

Great perspective for θ₁₃ Reactor Experiments

- Two Daya Bay Near detectors starting this summer
- RENO near & far detectors start data taking this summer
- Double Chooz is taking data since April 2011 Near Detector end 2012
- Reactor Project for θ₁₂: Daya Bay Proposal (Wang, Neutel 2011)

New Reactor Antineutrino Anomaly

- Experimental bias should be deeply investigated.
- Hypothesis : a 4th neutrino ($\Delta m^2 \approx eV^2$). No-oscillation disfavored at 99.8%

New experimental input is needed:

- L/E ≈ few m/MeV
 - Nucifer (Saclay/IN2P3), Scraam (LLNL), or new project at ILL reactor (Saclay/TUM/LAPP)
 - New source experiments (Borexino, 'Gavrin Neutel 2011, arXiv:1107.2335, ...)
- L/E ≈ km/GeV
 - Icarus detector moved to CERN, new neutrino beam, near detector (C. Rubbia)
 - T2K near detector

Backup

Need for new experimental inputs !

- Unexpected PMT light emission was found
- The rate is the same level of magnitude as the 'singles' rate, which is in line with the proposal
- The events are rather different from the 'singles'
- Set of cuts brings it at a level much lower than the 'singles'
- Analysis work is ongoing to assess systematics

Unique reference to be met by any other measurement or calculation

ILL data: conversion to v spectra

- Fit e⁻ spectrum with a sum of 30 effective branches
- Conversion of the effective branches to v spectra

• All theory included in these effective branches but:

- What Z? : Mean fit on nuclear data Z=f(E0) $Z(E_0) \approx 49.5 - 0.7E_0 - 0.09E_0^2, Z \ge 34$
- What A_{CW} ? : effective correction on the v-spectra $DN_n^{C,W}(E_n) \approx 0.65 \times (E_n - 4MeV) \%$
- Conversion error from envelop of numerical studies

- MURE evolution code: core composition and off equilibrium effects
- BESTIOLE code: build up database of ~800 nuclei and 10000 β -branches

→ 95+/-5% of the spectrum reproduced but still not meeting required precision → Useful estimate of ²³⁸U spectrum which couldn't be measured @ ILL

→ Measurement at FRMII ongoing (N. Haag & K Schreckenbach)

- 1. SAME ILL e- data Anchorage
- 2. Ab-Initio: "true" distribution of β -branches reproduces >90% of ILL e⁻ data.
- 3. Old-procedure: five effective anchorage-branches to the remaining 10%.

- +3% normalization shift with respect to old v spectrum
- Similar result for all isotopes (²³⁵U, ²³⁹Pu, ²⁴¹Pu)
- Stringent Test Performed Origin of the bias identified