The emiT Experiment: A Search for Time-reversal Violation in Polarized Neutron Beta Decay

H.P. Mumm, J.S. Nico, and A.K. Thompson

National Institute of Standards and Technology

S.J. Freedman and B.K. Fujikawa University of California - Berkeley/ Lawrence Berkeley National Laboratory

> G.L. Jones Hamilton College

C.Trull and F.E.Wietfeldt Tulane University

T.E. Chupp and R.L. Cooper, K.P. Coulter University of Michigan

J.F.Wilkerson University of North Carolina & Oak Ridge National Laboratory

> A. Garcia University of Washington

e of nce

Time Reversal Violation in Nuclear Beta Decay

- The observed matter antimatter asymmetry indicates the existence of CP violation (and corresponding T-violation) perhaps arising from non-SM interactions.
 - Left-Right Symmetric
 - Exotic Fermion
 - Leptoquark
- Yet In the Standard Model the size of measured CP and T violating effects imply extremely tiny (non-observable) T violating effects in nuclear beta decay.
- T violating contributions to beta decay can arise from
 - Parity violating, Time reversal violating N-N interactions
 - Parity conserving, Time reversal violating N-N interactions
 - Time reversal violating charged current quark-lepton interactions

Hence searches for T violation in nuclear beta decay have the potential to be sensitive to interactions beyond the SM.

We can write out a general Hamiltonian:

$$H_{\text{int}} = \sum_{i=V,A,S,P,T} (\overline{\psi}_p \mathcal{O}_i \psi_n) (C_i \overline{\psi}_e \mathcal{O}_i \psi_v + C_i' \overline{\psi}_e \gamma_5 \mathcal{O}_i \psi_v)$$

In the Standard Model, $C'_V = C_V$, $C'_A = C_A$, and others are zero,

and the C_i are real if T is a good symmetry.

$$\frac{d\omega}{dE_e d\Omega_e d\Omega_\nu} = G(E_e) \left(1 + a \frac{p_e \cdot p_\nu}{E_e E_\nu} + \sigma_n \cdot \left(A \frac{p_e}{E_e} + B \frac{p_\nu}{E_\nu} + D \frac{p_e \times p_\nu}{E_e E_\nu} \right) \right)$$

$$\begin{split} \lambda &\equiv \left|\frac{g_A}{g_V}\right| e^{-i\phi} \approx 1.2670 \pm 0.0035 \\ A &= -2\frac{|\lambda|^2 + |\lambda|\cos\phi}{1+3|\lambda|^2} \\ D &\approx -\frac{|\lambda|}{1+3|\lambda|^2} \{2\frac{\mathrm{Im}(C_V C_A^*)}{C_V C_A^*} + \frac{\alpha m}{p_{\epsilon}} \mathrm{Re}(\frac{C_s + C_S'}{C_V} - \frac{Q_T + C_T'}{C_A^*}) \\ &< 0.02 \end{split}$$

Polarized Neutron Decay (Time Reversal-Motion Reversal)

Possible Sources of T Violation

Beta Decay Tests of T-Invariance

 Combine T-odd combinations of three kinematic variables

$$D\sigma_n \bullet (p_e \times p_v) \qquad R\sigma_n \bullet (\sigma_e \times p_e)$$

- Require competing amplitudes with a relative phase
- Must account for final state effects

⁸Li R = $(0.9 \pm 2.2) \times 10^{-3}$

19_{Ne}

 $D = (1 \pm 6) \times 10^{-4}$

neutron

$$R = (8 \pm 15(\text{stat.}) \pm 5(\text{syst.})) \times 10^{-3}$$

$$D = (-2.8 \pm 7.1) \times 10^{-4}$$

$$D = (-6 \pm 12(\text{stat.}) \pm 5(\text{syst.})) \times 10^{-4}$$

J. Sromicki et al. Phys Rev. Lett. 82 57 (1999)

F. Calaprice, in Hyperfine Interactions (Springer, Netherlands, 1985), Vol. 22

Kozela et al. Phys. Rev. Lett. **102** 172301 (2009) T. Soldner et al. Phys. Lett. B **581** (2004) emiT I *Phys. Rev. C* **62** 055501 (2000)

Experimental Technique

emiT – Search for T-violation

7

Neutron Spin Transport

- High continuous neutron flux (1.7 x 10⁸ cm⁻² s⁻¹ at "C2") fission chamber measurement
- 560 μ T guide field, monitored during run
- Beam profile at 3 positions via Dysprosium foil activation
- Polarization measured with supermirror analyzer flipping ratio measurement

emiT Detector: Beta Detectors (4 panels and support hardware)

• 0.1 ns timing resolution (Pulse arrival time may be used to determine position)

- Thresholds (35-50 keV) (Software cut on geometric mean)
- Resolution ~18% at 1 MeV
- Cosmic ray muons deposit ~ 1.42 MeV (well separated)
- Overall rate 300 s⁻¹ per paddle (Signal to accidental ~ 1 to 1)

emiT Detector: Proton Paddle Assembly

Focusing efficiency reaches 90% (Voltage Dependent)

Required detector area reduced by ~ 80%

Surface barrier detectors

- 20 µg Au (less energy loss)
- 300 mm² active area
- 300 µm depletion depth
- Room temperature leakage current ~ μA

emiT Detector: Proton Paddle Assembly

emiT – Sc

Coincidence Events & Filtering

• 3 Hz singles per proton Surface Barrier detector

- 0.55 Average coincidence rate per pair
- 25 Hz average coincidence rate
- S:B = 30:1 (after filter)

Filtering and cuts:

- 12% Data collected with acceptable operational parameters (magnetic fields, currents, spin state, ...)
- 14% β -energy threshold set to 90 keV, to minimize detection efficiency drifts arising from PMT gain drifts
- 7%~ Require single β detector in coincidence with single proton event

Final data set ~ 300 million accepted coincidence events.

emiT "Blind" Extraction of D

 $\begin{aligned} & \text{Efficiency independent ratio,} \\ & w^{p_i e_j} = \frac{N_+^{p_i e_j} - N_-^{p_i e_j}}{N_+^{p_i e_j} + N_-^{p_i e_j}} + \mathcal{B}\hat{z} \cdot \tilde{\mathbf{K}}_D^{p_i e_j} \end{aligned}$

w is sensitive to *D*, but also to *A*, *B*Define a parameter,

$$v^{p_i} = \frac{1}{2} \left(w^{p_i R} - w^{p_i L} \right)$$

For a symmetric uniform detector,

$$v^{p_{i}} = PD\hat{z} \cdot \left(\tilde{\mathbf{K}}_{D}^{p_{i}e_{R}} - \tilde{\mathbf{K}}_{D}^{p_{i}e_{L}}\right)$$

Instrumental constant

$$\propto \int \frac{p_e \times p_p}{E_e E_p} d\Omega_a d\Omega_2 dV_{beam}$$

emiT – Search for T-violation

emiT: Final Result (Accepted to PRL, arXiv: 1104.2778)

Calculate v for "paired rings" : the average of the values of v from the sixteen proton-cells at the same |z|, i.e. ± 2 , ± 6 , ± 10 , ± 14 cm

$$\tilde{D} = \frac{\bar{v}}{P\bar{K}_D} \qquad \qquad \bar{K}_D = 0.378 = \hat{z} \cdot \tilde{\mathbf{K}}_D^{p_i e_R} - \tilde{\mathbf{K}}_D^{p_i e_L}$$

The weighted average of the 4 paired rings, $D_{uncor} = 0.72 \pm 1.89$ $\chi^2 = 0.73$ (3 DOF) Apply corrections yielding the final result;

$$D = (-0.96 \pm 1.89(stat) \pm 1.01(sys)) \times 10^{-4}$$

 $\varphi_{AV} = 180.013^{\circ} \pm 0.028^{\circ}$

emiT II: Summary of Systematic Effects

	Source	Correction	Uncertainty
	Background asymmetry	0^{a}	0.30
	Background subtraction	0.03	0.003
	Electron backscattering	0.11	0.03
	Proton backscattering	$0^{\mathbf{a}}$	0.03
	Beta threshold	0.04	0.10
→	Proton threshold	-0.29	0.41
→	Beam expansion, magnetic field	-1.50	0.40
	Polarization non-uniformity	0^{a}	0.10
	ATP - misalignment	-0.07	0.72
	ATP - Twist	$0^{\mathbf{a}}$	0.24
	Spin-correlated flux ^b	0^{a}	3×10^{-6}
	Spin-correlated pol.	0^{a}	5×10^{-4}
	Polarization ^c		0.04^{d}
	$ar{K}_D{}^{ m c}$		0.03
	Total systematic corrections	-1.68	1.01

^a Zero indicates no correction applied.
 ^b Includes spin-flip time, cycle asymmetry, and flux variation.

^c Included in the definition of ~D.
 ^d Assumed polarization uncertainty of 5%

Proton Threshold Effect

Largely Cancels in *v* - correction: $(-0.29\pm0.41)x10^{-4}$ (MC and fits to spectra)

Systematics: Effect of Guide Field

Magnetic field changes e-p angular acceptance. Expansion changes average.

$$A\sigma_n \cdot \frac{p_e}{E_e}$$

Solution: Detailed Monte Carlo.

Systematics: Effect of Guide Field

Magnetic field changes e-p angular acceptance. Expansion changes average.

$$A\sigma_n \cdot \frac{p_e}{E_e}$$

b

a

3

NCNR Expansion

• The new NGC beam line could provide a factor of ~10 increase in neutron flux

Major systematics
 Beam expansion/mangetic field: reduce field
 ATP error also limited by beam shape
 AFP spin flipper
 ³He Polarizer
 Proton threshold requires detetector/electronics improvement

Time Reversal Invariance: emiT III ?

Leptoquarks/Exotic Fermions/L-R symmetry + Scalar and Tensor Currents

 $w^{p_i e_j} \approx \mathbf{P} \cdot \left(A \tilde{\mathbf{K}}_A^{p_i e_j} + B \tilde{\mathbf{K}}_B^{p_i e_j} + D \tilde{\mathbf{K}}_D^{p_i e_j} \right)$

$$w^{p_i e_j} \approx \mathbf{P} \cdot \left(A \tilde{\mathbf{K}}_A^{p_i e_j} + B \tilde{\mathbf{K}}_B^{p_i e_j} + D \tilde{\mathbf{K}}_D^{p_i e_j} \right)$$

Systematics: effect of guide field

