EPS HEP 2011

Tzvetalina Stavreva

July 21, 2011

Prompt Photons and Heavy Quark Jets

- Prompt photons produced in hard scattering or via fragmentation
- Heavy quark jet charm or bottom jet
- Depending on the collision type this process can be useful in various ways
- In $p \bar{p}$ collisions arXiv:0901.3791, arXiv:0901.0739 useful for testing the charm or bottom PDF (intrinsic charm or bottom)
- In p A collisions (LHC,RHIC) can be used to constrain the gluon nuclear PDF (nPDF) - (arXiv:1012.1178)
- Knowing the precise nPDFs is necessary for obtaining reliable predictions in A - A collisions!
- In A-A collisions helps to obtain a better understanding of the parton energy loss processes in the massive quark sector (work in progress)

Comparison between theory and data @ $p-\bar{p}$

Measurements by DØ Collaboration

- Really good agreement between data and theory for $\gamma + b$
- For $\gamma + c$ data at large $p_{T\gamma}$ is above the theory curve \rightarrow possible explanation existence of intrinsic charm

The Gluon nPDF

- Lack of data constraining the nuclear gluon PDF
- Illustrated by:

$$R_g^{Pb}(x,Q) = g^{p/Pb}(x,Q)/g^p(x,Q)$$

• Different nPDF sets (nCTEQ, EPS and HKN + errors) \rightarrow differing predictions - need a more precise determination of $g^{p/Pb}(x,Q) \Rightarrow$ LHC data is needed!

The nCTEQ nPDFs

Different equally good fits representing the spread in the gluon nPDF

http://projects.hepforge.org/ncteq/ Available at:

fits	decut3	nuanua1	globfac
d ata	charged lepton	neutrino	charged lepton + neutrino

For more details see J.-Y. Yu's talk (21.07 15:00 Session: QCD)

How can $\gamma + Q$ help?

- At LO only one hard scattering subprocess Compton subprocess g-Q initiated + fragmentation contributions
- Standard approach: HQ PDFs are generated radiatively \Rightarrow $R_g^{Pb} \simeq R_c^{Pb}$

Direct access to gluon nPDF

$\gamma + Q$ production in p - Pb collisions @ the LHC

- g & Q initiated subprocesses dominate (> 80%) \Rightarrow sensitivity to gluon and HQ PDFs.
- Using an integrated yearly luminosity of $\mathcal{L}=10^{-1}pb^{-1}$ a precursory number of events per year at EMCal for $\gamma+c$ is $\mathcal{N}_{\gamma+c}^{pPb}=11900$ ($\sigma_{\gamma+c}^{pPb}=119nb$) and for $\gamma+b$ is $\mathcal{N}_{\gamma+b}^{pPb}=2270$ ($\sigma_{\gamma+b}^{pPb}=22.7nb$)

Constraining the gluon nPDF

$$R_{pA}^{\gamma Q} = \frac{\sigma(pA \to \gamma \ Q \ X)}{A \ \sigma(pp \to \gamma \ Q \ X)}$$

- $R_{pA}^{\gamma Q} \simeq R_g^{Pb}$ in the x region probed at ALICE
- Measurements of $\gamma + Q$ with appropriate error bars will allow to distinguish between the different nPDF sets and place useful constraints on the gluon nPDF (arXiv:1012.1178)

$\gamma + Q$ production in p - Pb collisions @ RHIC

- g & Q initiated subprocesses dominate again ⇒ sensitivity to gluon and HQ PDFs.
- A precursory number of events per year for $\gamma + c$ $\mathcal{N}_{\gamma+c}^{dAu} = 28000$ and for $\gamma + b$ $\mathcal{N}_{\gamma+b}^{dAu} = 24$

Constraining the gluon nPDF

$$R_{pA}^{\gamma Q} = \frac{\sigma(pA \to \gamma \ Q \ X)}{A \ \sigma(pp \to \gamma \ Q \ X)}$$

- $R_{pA}^{\gamma Q} \simeq R_g^{Pb}$ in the x region probed at ALICE
- Measurements of $\gamma + Q$ with appropriate error bars will allow to distinguish between the different nPDF sets and place useful constraints on the gluon nPDF (arXiv:1012.1178)

$\gamma + Q$ in A - A Collisions

- Need more differential observables to quantify the amount of energy loss, e.g. $\gamma+jet$ correlations (X.-N. Wang, Z. Huang, I. Sarcevic hep-ph/9605213, F. Arleo, P. Aurenche, Z. Belghobsi, J.-P. Guillet hep-ph/041008)
- $\gamma + Q$ ideal for probing hot QCD medium
- Q Jet Quenching
- γ is medium insensitive \Rightarrow can gauge HQ's initial energy

$\gamma + Q$ in A - A Collisions

- $\gamma + Q$ can help to clarify the energy loss in the heavy quark sector $(\epsilon_q > \epsilon_c > \epsilon_b)$ (Heavy quark colorimetry of QCD matter -Y. L. Dokshitzer, D.E. Kharzeev)
- The two-particle final state further offers a range of observables
- ϵ_Q computed on an event by event basis, with quenching weight obtained perturbatively [Armesto Dainese Salgado Wiedemann 2005 (arXiv:hep-ph/0501225)]
- work in progress T.S., F.Arleo, I. Schienbein

Effects of energy loss on the $\gamma + Q$ cross-section - LO

γ+c at LO

- Difference in spectrum vs p_{TQ} in vacuum and in medium \Rightarrow due to energy loss
- $\frac{d\sigma}{dp_{T,\gamma}}$ spectrum almost unchanged

Photon-jet pair momentum:

$$q_{\perp} = |\vec{p}_{T\gamma} + \vec{p}_{TQ}|$$

- At LO direct component $q_{\perp} \simeq \epsilon_Q$
- At LO fragmentation component ε_Q represents the shift of the q_T spectrum in vacuum vs the one in medium

q_{\perp} in more detail - 1

- Direct and fragmentation components behave very distinctly
- In medium the direct contribution decreases sharply with increasing $q_T \Rightarrow$ small probability of events with large ϵ_Q
- In vacuum the direct contribution is non-zero only at $q_T = 0$
- Therefore compare only the vacuum and medium fragmentation contributions

q_{\perp} in more detail - \parallel

LO Fragmentation Contribution

- $\Delta E_c > \Delta E_b$; as q_T grows the difference disappears, as the quenching weight depends on m/E, which becomes similar for $\gamma + c$ and $\gamma + b$ at large q_T
- Need to compare σ in medium and vacuum at the NLO level, where the particles have a larger kinematic phase-space!

$\gamma + Q$ at NLO

- assume the medium induced effects factorize from hard-scattering cross-section
- preliminary NLO cross-section in medium

Conclusions

- $\gamma + Q$ production versatile process
- constrain the HQ PDFs in hadron-hadron collisions
- constrains gluon nPDF in p A collisions
- In A-A collisions it can be used for an estimate of the HQ energy loss + access to the mass hierarchy of parton energy loss