

The neutron Electric Dipole Moment experiment – exploring the low-energy precision frontier

Geza Zsigmond on behalf of the nEDM Collaboration Europhysics Conference on HEP, Grenoble, July 21-27 2011

The Neutron EDM Collaboration

	M. Burghoff, S. Knappe-Grüneberg, A. Schnabel, L. Trahms, J. Vogt	Physikalisch Technische Bundesanstalt, Berlin
	G. Ban, Th. Lefort, Y. Lemiere, O. Naviliat-Cuncic, E. Pierre ¹ , G. Quéméner	Laboratoire de Physique Corpusculaire, Caen
	K. Bodek, St. Kistryn, G. Wyszynski, J. Zejma	Institute of Physics, Jagiellonian University, Cracow
	A. Kozela	Henryk Niedwodniczanski Inst. Of Nucl. Physics, Cracow
	N. Khomutov	Joint Institute of Nuclear Reasearch, Dubna
	M. Kasprzak, P. Knowles, A. Weis, Z. Grujic	Département de physique, Université de Fribourg, Fribourg
	G. Pignol, D. Rebreyend, S. Roccia	Laboratoire de Physique Subatomique et de Cosmologie, Grenoble
	S. Afach, G. Bison	Biomagnetisches Zentrum, Jena
	N. Severijns	Katholieke Universiteit, Leuven
	C. Plonka-Spehr, J. Zenner ¹	Inst. für Kernchemie, Johannes-Gutenberg-Universität, Mainz
	W. Heil, H.C. Koch, A. Kraft, T. Lauer , D. Neumann, Yu. Sobolev ²	Inst. für Physik, Johannes-Gutenberg-Universität, Mainz
ł	Z. Chowdhuri, M. Daum, <mark>M. Fertl³, B. Franke⁴, M. Horras⁴,</mark> B. Lauss, J. Krempel, A. Mtchedlishvili, P. Schmidt-Wellenburg, G. Zsigmond	Paul Scherrer Institut, Villigen
÷	C. Grab, <u>K. Kirch¹</u> , C. Kittel, A. Knecht, F. Piegsa	Eidgenössische Technische Hochschule, Zürich

also at: ¹Paul Scherrer Institut, ²PNPI Gatchina, ³Eidgenössische Technische Hochschule, ⁴TU München

EDM a probe for CP violation

EDM a probe for CP violation

EDM a probe for CP violation

 $H = -\mu \frac{\sigma}{|\sigma|} \mathbf{B} - d \frac{\sigma}{|\sigma|} \mathbf{E}$

A nonzero particle EDM violates T, P and, assuming CPT conservation, also CP.

- $H' = -\mu \frac{-\sigma}{|\sigma|} (-B) d \frac{-\sigma}{|\sigma|} E$
- → CP violation might help to explain matter/anti-matter asymmetry (BAU)
 - → Excellent probe for physics beyond the Standard Model

Previous neutron EDM searches

PAUL SCHERRER INSTITUT

Previous neutron EDM searches

Experiment principle

Difference of UCN precession frequencies in parallel/anti-parallel **B** and **E** fields:

$$h \varDelta v = 2d_{n} \left(E_{\uparrow\uparrow} + E_{\uparrow\downarrow} \right) + 2\mu_{n} \left(B_{\uparrow\uparrow} - B_{\uparrow\downarrow} \right)$$

for $\sigma_{d_{n}} < 10^{-26} \,\mathrm{e \ cm} \longrightarrow \sigma_{v} < 60 \,\mathrm{nHz} \ \mathrm{at} \ 30 \,\mathrm{Hz}$

Experiment principle

Difference of UCN precession frequencies in parallel/anti-parallel **B** and **E** fields:

$$h \varDelta v = 2d_{\rm n} \left(E_{\uparrow\uparrow} + E_{\uparrow\downarrow} \right) + 2\mu_{\rm n} \left(B_{\uparrow\uparrow} - B_{\uparrow\downarrow} \right)$$

for $\sigma_{d_{\rm n}} < 10^{-26} \,{\rm e \ cm} \longrightarrow \sigma_{v} < 60 \,{\rm nHz}$ at 30 Hz

New: Improved magnetometry – ¹⁹⁹Hg + Cs magnetometers

Apparatus – main parts

G Zsigmond - nEDM Collaboration

PAUL SCHERRER INSTITUT

The Ramsey technique

The Ramsey technique

nEDM systematic effects

Effect	Shift (Bak06) [10 ⁻²⁷ <i>e</i> cm]	σ (Bak06) [10 ⁻²⁷ e cm]	σ (goal at PSI) [10 ⁻²⁷ <i>e</i> cm]
Cavity dipole	-5.6	2.00	0.10
Other dipole fields	0.0	6.00	0.40
Quadrupole difference	-1.3	2.00	0.60
v×E translational	0.0	0.03	0.03
v×E rotational	0.0	1.00	0.10
Second-order v×E	0.0	0.02	0.02
vHg light shift (geo phase)	3.5	0.80	0.40
vHg light shift (direct)	0.0	0.20	0.20
Uncompensated B drift	0.0	2.40	0.90
Hg atom EDM	-0.4	0.30	0.06
Electric forces	0.0	0.40	0.40
Leakage currents	0.0	0.10	0.10
ac fields	0.0	0.01	0.01
Total	-3.8	7.2	1.4

C. A. Baker et al., Phys. Rev. Lett 97 (2006) 131801

G Zsigmond - nEDM Collaboration

PAUL SCHERRER INSTITUT

Thermal stabilization

Surrounding mag. field compensation

Thermal stabilization

Surrounding mag. field compensation

Superconducting magnet polarizer

Thermal stabilization

Surrounding mag. field compensation

Thermal stabilization

Surrounding mag. field compensation

Superconducting magnet polarizer

- UCN source at PSI commissioned 2010 25× more UCN/cycle than at ILL
- Main systematic effects reduced by improved magnetometry
- First nEDM data this year (50 nights)

$$d_n = (? \pm 6_{\text{stat}} \pm 4_{\text{sys}}) \times 10^{-27} e \cdot \text{cm}$$

Further improvements on sys. effects in winter 2011-2012 when PSI accelerator shut-down
In 2012-2013 – 200 nights of data taking

$$d_n = (? \pm 3_{\text{stat}} \pm 1.4_{\text{sys}}) \times 10^{-27} e \cdot \text{cm}$$

Previous: Baker et al. '06 $d_n = (+2 \pm 15_{\text{stat}} \pm 7_{\text{sys}}) \times 10^{-27} e \cdot \text{cm}$