## **Testing String Vacua in the Lab** *Large extra dimensions and hidden photons*

#### MICHELE CICOLI

DESY Theory Group EPS HEP 2011, 23 Jul 2011

Based on:

- 1. MC, M. Goodsell, J. Jaeckel and A. Ringwald, arXiv:1103.3705 [hep-th]
- 2. MC, C. Burgess and F. Quevedo, arXiv:1105.2107 [hep-th]
- 3. MC, M. Kreuzer and C. Mayrhofer, arXiv:1107.0383 [hep-th]

## **Main results**

- Type IIB flux compactifications on K3 fibrations
- Explicit compact examples from toric geometry with del Pezzo divisors
- Stabilisation of all closed string moduli
- Get a very large anisotropic volume of the compactification manifold
- Two micron-sized extra dimensions and fifth-forces at the edge of detectability
- Strings at LHC scales [see Luest's talk]
- Dynamical solution of the hierarchy problem based on moduli stabilisation
- $\checkmark$  The bulk is approximately supersymmetric:  $m_{3/2} \sim 1$  meV
- SUSY is badly broken on the SM brane: NO superpartners!
- Stringy SLED scenarios promising for dark energy as the brane back-reaction might cancel the contribution to  $\Lambda$  from the SM brane  $\Rightarrow \Lambda \sim M_{KK}^{6D} \sim 1$  meV for  $M_{6D} \sim 1$  TeV
- Rich spectrum of light states
  - Very light hidden photons with kinetic mixing with the ordinary photon
- Good predictions for Hidden CMB and Dark Forces Detectable in the lab (DESY)!

## **Anisotropic compactifications**

Type IIB LARGE Volume Scenarios can naturally give rise to TeV scale strings:

$$V_6 \sim e^{c/g_s} \gg 1$$
  $g_s \ll 1$   $\mathcal{V} := V_6 M_s^6 \sim M_p^2 / M_s^2 \sim 10^{30} \Rightarrow M_s \sim 1 \,\text{TeV}$ 

BUT the CY has a symmetric shape:  $L \sim V_6^{1/6} \sim (10 \text{ MeV})^{-1} \sim 10 \text{ fm}$ Need to find anisotropic solutions with  $V_6 \sim L^2 l^4$  where

$$L \sim 10 \,\mu{\rm m} \sim (0.01 \,{\rm eV})^{-1}$$
  $l \sim 10^{-4} \,{\rm fm} \sim (1 \,{\rm TeV})^{-1} \ll L$ 

Consider K3-fibred CY three-folds with del Pezzo divisors:

$$\mathcal{V} = t_1 \tau_1 - \tau_3^{3/2}$$

- **)** 2D  $\mathbb{P}^1$  base:  $t_1 := (LM_s)^2$
- $\checkmark$  4D K3 fibre:  $au_1:=(lM_s)^4$
- **9** 4D blow-up mode (del Pezzo):  $\tau_3 := (dM_s)^4$

Large volume limit:  $t_1 \tau_1 \gg \alpha \gamma \tau_3^{3/2} \Rightarrow \mathcal{V} \simeq t_1 \tau_1 = L^2 l^4 M_s^6 \sim e^{c/g_s} \sim 10^{30}$ Need to fix  $\tau_1 \sim \mathcal{O}(10)$  so that  $\langle t_1 \rangle \gg \sqrt{\langle \tau_1 \rangle} \simeq \sqrt{\langle \tau_3 \rangle} \Rightarrow L \gg l \simeq d$ 

## **Moduli stabilisation**

No-scale structure  $\Rightarrow$  Kähler moduli  $\tau_i$  fixed beyond the leading order in  $\alpha'$  and  $g_s$ 

Leading  $\alpha'$  correction to K depends only on  $\mathcal{V}$ 

- $\checkmark$  Open string loop corrections to K depend on the brane set-up
  - 1. D7 wrapping  $\tau_1 \Rightarrow \tau_1$ -dependence due to locality  $\Rightarrow \langle \tau_1 \rangle \sim g_s^{4/3} \langle \mathcal{V} \rangle^{2/3} \gg 1$
  - 2. No D7 wrapping  $\tau_1 \Rightarrow$  No  $\tau_1$ -dependence since open strings are far away

Non-perturbative racetrack on  $\tau_3$ :  $W = W_0 + A e^{-a_3 T_3} - B e^{-b_3 T_3}$   $\Rightarrow \text{ fix } \langle \tau_3 \rangle \sim 1/g_s \sim \mathcal{O}(10) \text{ and } \langle \mathcal{V} \rangle \sim e^{c/g_s} \sim 10^{30}$ Fix  $\langle \tau_1 \rangle \sim \langle \tau_3 \rangle \sim \mathcal{O}(10)$  via poly-instanton corrections from an ED3 on  $\tau_1$ :

$$W = W_0 + A e^{-a_3 (T_3 + C_1 e^{-2\pi T_1})} - B e^{-b_3 (T_3 + C_2 e^{-2\pi T_1})}$$

 $V_F = V_{\text{lead}} + \delta V_{\text{poly}}, V_{\text{lead}} \sim \mathcal{V}^{-3} \text{ and } \delta V_{\text{poly}} \sim \mathcal{V}^{-4}$  $\Rightarrow d \simeq \langle \tau_3 \rangle^{1/4} \ell_s \gtrsim l \simeq \langle \tau_1 \rangle^{1/4} \ell_s \sim 10^{-17} \text{ mm} \ll L \simeq \sqrt{\langle t_1 \rangle} \ell_s \sim 0.01 \text{ mm}$ 

Closed string loop corrections to K depend on  $\tau_1$  but do not beat the poly-instantons:

$$\delta V_{(g_s)} \sim \Lambda^2 \operatorname{STr}(M^2) \sim (M_{KK}^{6D})^2 m_{3/2}^2 \sim \frac{\tau_1}{\mathcal{V}^4} \sim 10^{-120} M_p^4$$

### **Pictorial view**



#### **Mass scales**

| Higher dim Plar                                        | Higher dim Planck scales: $M_{10D} = (4\pi)^{1/8} M_s$ |                     |           |                | $a_s^{-1}$ $M_{6D}$ | $= (4\pi\tau_1)^{1/2}$ | $^4 M_s$ |
|--------------------------------------------------------|--------------------------------------------------------|---------------------|-----------|----------------|---------------------|------------------------|----------|
| • 4D Planck scale: $M_p = \sqrt{4\pi \mathcal{V}} M_s$ |                                                        |                     |           |                |                     |                        |          |
| 6D KK scale:                                           | $M_{KK}^{6D}$                                          | $= M_s / t_1^{1/2}$ | = 1/L     |                |                     |                        |          |
| 10D KK scale:                                          | $M_{KK}^{10D} = M_s / \tau_1^{1/4} = 1/l$              |                     |           |                |                     |                        |          |
| SM KK scale:                                           | $M_{KK}^{SM} = M_s / \tau_{SM}^{1/4} = 1/d$            |                     |           |                |                     |                        |          |
|                                                        | $M_s$                                                  | $M_{6D}$            | $M_{10D}$ | $M_{KK}^{SM}$  | $M_{KK}^{10D}$      | $M^{6D}_{KK}$          |          |
| isotropic case                                         | 1 <b>TeV</b>                                           | 2000 <b>TeV</b>     | 2 TeV     | 0.5 <b>TeV</b> | 50 <b>MeV</b>       | 0.3 <b>Me</b> V        |          |
| anisotropic case                                       | 3  TeV                                                 | 10 <b>TeV</b>       | 4  TeV    | 1  TeV         | 1  TeV              | 1  meV                 |          |
|                                                        |                                                        |                     |           |                |                     |                        |          |

The moduli are lighter than KK masses:

- S- and U-moduli:  $m_{U,S} \sim m_{3/2} \sim M_s^2/M_p \sim 1 \text{ meV}$  Stable against loops!
- T-moduli can be even lighter due to no-scale structure  $m_1 \simeq \frac{M_p}{\mathcal{V}^2} \sim 10^{-32} \text{ eV} \qquad m_{\mathcal{V}} \simeq \frac{M_p}{\mathcal{V}^{3/2}} \sim 10^{-18} \text{ eV}$ BUT need still to take radiative corrections into account!

# **Supersymmetry breaking**

- Need large SUSY breaking for TeV scale strings ⇒ consider a non-SUSY brane construction with just the SM in the EFT
- The bulk is approximately supersymmetric:  $m_{3/2} \sim M_s^2/M_p \sim 10^{-3}$  eV for  $M_s \sim 1$  TeV
- Check fifth forces due to light moduli!
- SUSY is badly broken on the SM brane
  - $\Rightarrow$  large radiative corrections to moduli masses from loops of massive open strings!

$$\delta m \simeq \frac{\zeta M_s^2}{M_p} \simeq \frac{\zeta M_p}{\mathcal{V}} \quad \text{where} \quad \mathcal{L}_{\text{int}} = \frac{\zeta}{M_p} \,\delta \phi \, F_{\mu\nu} F^{\mu\nu}$$

- $\zeta = 1/\mathcal{V}$  for  $\tau_1 \Rightarrow$  Mass of the K3 fibre is unchanged:  $m_1 \sim 10^{-32}$  eV BUT it is very weakly coupled:  $g \sim 1/(M_p \mathcal{V}) \Rightarrow$  no bounds from 5-th forces
- $\zeta = 1$  for  $\mathcal{V} \Rightarrow$  Mass of the volume shifted from  $m_2 \sim 10^{-18}$  eV to  $m_2 \sim 10^{-3}$  eV at the edge of detectability in fifth force experiments for scalars with  $g \sim 1/M_p!$

# Phenomenology

UV completion gives more info on the EFT than simple low gravity models Low-energy bulk SUSY and new states make the predictions differ from minimal ADD Many exotic light states  $\Rightarrow$  stringent constraints from colliders, astrophysics and cosmology

- Generic constraints of SLEDs
- Constraints related to the presence of specific types of new light fields
- 1. Tests of Newton's inverse square law
- 2. Energy loss into the EDs due to radiation of KK modes
- 3. Absence of MSSM superpartners for each of the known SM particles SUSY is non-linearly realised:  $electron \rightarrow electron + Goldstino$ The Goldstino is eaten up by the gravitino when the theory is coupled to the bulk
  - $\Rightarrow$  The spectrum on the SM brane does not include the MSSM
  - $\Rightarrow$  Prediction: LHC searches should find no superpartner so far successful!
- 4. Can evade strong astrophysical bounds from neutron-star cooling ( $M_{6D} > 700$  TeV) since the KK modes decay into invisible *dof*

## **Hidden photons**

Hidden photon interacting with the visible sector via kinetic mixing with the hypercharge:

$$\mathcal{L} \supset -\frac{1}{4} F^{(\text{vis})}_{\mu\nu} F^{\mu\nu}_{(\text{vis})} - \frac{1}{4} F^{(\text{hid})}_{\mu\nu} F^{\mu\nu}_{(\text{hid})} + \frac{\chi}{2} F^{(\text{vis})}_{\mu\nu} F^{(\text{hid})\mu\nu} + m^2_{\gamma'} A^{(\text{hid})}_{\mu} A^{(\text{hid})\mu} + A^{(\text{vis})}_{\mu} j^{\mu}$$

 $m_{\gamma'}$  may arise via:

- Hidden Higgs (model-dependent)
- Stückelberg mechanism (typically stringy)

Focus on the Stückelberg mechanism to get robust predictions!

Kinetic mixing at 1-loop:

 $\chi \sim \frac{g_Y g_{\rm hid}}{16\pi^2}$ 

# Phenomenology

Similar to neutrino mixing, kinetic mixing induces photon  $\leftrightarrow$  hidden photon oscillations

- Thermal photons get a plasma mass of the order  $\omega_P \sim 1 \text{ meV}$   $\Rightarrow$  resonant conversion into  $\gamma'$  with  $m_{\gamma'} \sim 1 \text{ meV}$  after BBN but before CMB decoupling  $\Rightarrow$  increase in the effective number of relativistic *dof*. *Hidden CMB* Get  $\Delta N_{\nu}^{\text{eff}} = 1.3 \pm 0.9$  (WMAP7+BAO+ $H_0$ ) if  $\chi \sim 10^{-6}$ Experiments in Hamburg: ALPS (DESY) and SHIPS (Observatory)
- SM particles get a small charge under the hidden U(1) leading to Dark Forces For  $m_{\gamma'} \sim 1$  GeV, interesting explanations of:
  - I deviation of  $(g-2)_{\mu}$  from the SM prediction if  $\chi \sim 10^{-3} \div 10^{-2}$
  - puzzling observations connected to DM and astrophysics (DAMA, CoGeNT and PAMELA) if  $\chi \gtrsim 10^{-6}$

New fixed-target experiments at DESY (HIPS), MAMI and Jefferson Lab

## **Parameter space**

Constraints on the  $(\chi,m_{\gamma'})$  parameter space from astrophysics, cosmology and laboratory experiments



## Hidden photons as open strings

In type IIB vacua,  $\gamma'$  is an excitation of a D7 wrapping a 4-cycle  $\tau_{hid}$  far from the SM

For large  $\tau_{hid}$ ,  $g_{hid}^{-2} = \tau_{hid}/(4\pi) \ll 1 \Rightarrow \chi$  significantly suppressed

 $\chi \sim g_Y g_{\text{hid}} / (16\pi^2) \sim 0.5 \times 10^{-2} / \sqrt{\tau_{\text{hid}}}$ 

 $m_{\gamma'} \neq 0$  is due to the Green-Schwarz mechanism by turning on a world-volume flux

$$m_{\text{St}\,ij}^2 = \left(\frac{4g_i g_j}{3\pi}\right) q_{ip}(\mathcal{K}_0)_{pm} q_{mj} M_p^2$$

- Kähler moduli get charged under  $U(1)_{hid}$  and a comb. of axions gets eaten up by the  $\gamma'$
- A moduli-dependent FI term gets generated  $\Rightarrow$  take it into account for moduli fixing
- Promising study of  $\gamma'$  in the LARGE Volume Scenario for isotropic compactifications [Goodsell, Jaeckel, Redondo and Ringwald]
- BUT no prediction in the interesting regions and no full study of *D*-terms and moduli stabilisation (*D*-terms are dangerous since they give rise to a run-away for  $\mathcal{V}$ )  $\Rightarrow$ 
  - Consider anisotropic compactifications and get good predictions
  - D-term problem solved by complicated CYs which dynamically reduce to the old ones

## **Pictorial view**



 $t_1$ 

# **Phenomenological implications**

Focus on the most promising scenario ( $\gamma'$  on  $\tau_1$ ) and take moduli stabilisation into account Fix  $\tau_1$  via  $g_s$  corrections to K and not via poly-instantons!

$$\langle \tau_3 \rangle \simeq g_s^{-1} \qquad \langle \mathcal{V} \rangle \simeq e^{c \langle \tau_3 \rangle} \qquad \langle \tau_1 \rangle = \kappa \langle \tau_2 \rangle \quad \text{with} \quad \kappa = (g_s c_1)^2 / c_2$$

The relation between  $m_{\gamma'}$  and  $\chi$  can be written as  $m_{\gamma'} \sim \kappa \, 10^{24} \chi^3 \, {\rm GeV}$ 

1. Natural Dark Forces for intermediate scale strings

$${old p}_{\gamma^\prime}\simeq 1$$
 GeV and  $\chi\simeq 10^{-6}$  for  $\kappa\sim 10^{-6}$ 

No fine-tuning and  $M_s \sim 10^{11}$  GeV

Slightly anisotropic CY:  $L \sim t_1^{1/2} \ell_s \sim 10^4 \ell_s > l \sim \tau_1^{1/4} \ell_s \sim 10^2 \ell_s$ 

2. Hidden CMB with KK Dark Forces and strings at the LHC

$$lacksquare$$
  $m_{\gamma'}\simeq 1$  meV and  $\chi\simeq 10^{-6}$  for  $\kappa\sim 10^{-18}$ 

- Fine-tuning needed and  $M_s \sim 1$  TeV
- Solution  $M_{\gamma'}^{KK} \sim M_s \tau_1^{-1/4} \sim 1$  GeV might be Dark Forces
- $\label{eq:lagrange} { \mbox{ Very anisotropic CY: } } L \sim t_1^{1/2}\,\ell_s \sim 10^{11}\,\ell_s \gg l \sim \tau_1^{1/4}\,\ell_s \sim 10^2\,\ell_s$

### **Predictions**

Kinetic mixing vs  $\gamma'$  mass for anisotropic compactifications

