EPS Grenoble, France

June 21-27, 2011

Jet Energy Calibration and Transverse Momentum Resolution at CMS

la lashvili

For the CMS Collaboration

Outline

Introduction

- □ Jet energy calibration
 - Calibration strategy
 - MC-truth calibration
 - In-situ calibration
- □ Jet energy resolution
 - Core resolution studies
 - Full resolution shape and tail studies

Majority of physics analyses relay on precise Jet Energy Calibration

- Precision measurements:
 - ➡ Jet cross sections. A 1% uncertainty on the JES translates to ~10% uncertainty at p_T = 500 GeV
 - Top mass measurement. A 1% uncertainty on the JES leads to O(1%) uncertainty on the top mass.
- Searches: need uniform jet response, good data / MC agreement for JES.

Precision knowledge of jet energy resolutions required for

- Unfolding jet spectra
- \succ Predicting missing E_T tails in SUSY searches

Jet Flavors and types

3

CaloJets

Calorimeter energy depositions grouped in CaloTowers.

JetPlusTrack

Calorimeter jets whose energy has been corrected with jet-track association.

PFlow Jets

Individually reconstructed particles (PF particles) by combination of multiple detector inputs (excellent tracking, 3.8 T magnetic field, fine granular EM calorimeter).

□ GenJets

Stable simulated particles (after hadronization and before interaction with the detector).

JEC corrects on average the energy of a reconstructed jet to the GenJet level.

the correction scales jet 4-vector

Offset correction to account for noise & pile-up
 Jet calibration starting from the MC truth JEC.
 Small residual correction is applied on top of MC truth, based on in-situ measurements

- ➤ relative JES from dijet p_T balance
- > absolute JES from γ/Z +jet pT balance

the default JEC refers to the QCD flavor composition.

$$\mathcal{C} = C_{\text{off}}(p_T^{raw}) \cdot C_{\text{MC}}(p_T', \eta) \cdot C_{\text{rel}}(\eta) \cdot C_{\text{abs}}$$

Offset correction

□ Tevatron method: average p_T in a jet cone due to noise and Pile-Up (PU). Measured in Zero Bias data

 $C_{\text{off}}(N_{\text{PV}}, \eta, E^{raw}) = 1 - (N_{\text{PV}} - 1)\frac{\mathcal{O}_E(\eta)}{E^{raw}}$

Jet Area method: average p⊤ density per unit jet area. Measured in-situ in high p⊤ physics events. Takes into account event-by-event and jet-by-jet fluctuations

Applies to all jets algorithms through the calculation of the jet area:

$$C_{ ext{off}}(
ho, \mathcal{A}^{jet}, p_T^{raw}) = 1 - rac{(
ho -
ho_{ ext{UE}}) \cdot \mathcal{A}^{jet}}{p_T^{raw}}$$

Hybrid Jet Area method: imports η-dependence from Tevatron method into Jet Area Method

• Offset uncertainty:

> ~1%/N_{PV} at p_T =20 GeV. Negligible at p_T =100 GeV.

Estimated from comparison between Tevatron method and jet area method.

□ The MC truth correction is derived from Pythia QCD events

- geometrically matching the reconstructed jets to the GenJets
- > response R = p_T^{reco}/p_T^{gen} ; correction defined as 1/<R> vs < p_T^{reco} >

□ Jet types using tracking (PF, JPT) require small corrections in the tracking coverage region ($|\eta|$ <1.5)

□ All jet types have similar behavior in Forward Hadronic Calorimeter region of $|\eta|>3.0$.

Relative (vs. η) JEC

■ Relative JEC measured with back-to-back dijet events using p_T balance method

❑ Resolution bias: steeply falling QCD spectrum + resolution difference between barrel and probe jets → higher measured response in the direction of the jet with the worst resolution

□ ISR+FSR effect: the extra jet activity biases measured response – P_T threshold on 3rd jet varied and extrapolated to 0.

Relative (vs. η) JEC

□ To account for the data/MC differences, a residual correction is derived from the MC/data response ratio. Includes corrections for:

- plus/minus η asymmetry
- > extra jet activity

$$C_{\rm res}(\pm \eta) = \frac{k_{\rm FSR}(\eta) \cdot C_{\rm sym}(|\eta|)}{1 \mp A(|\eta|)}$$

Measurement precision

Limited by systematic uncertainty

Dominant uncertainty from the resolution bias modeling in the MC -estimated by varying the resolution and the QCD spectrum slope

Other sources (PU, ISR+FSR, Asymmetry Statistics) are negligible

З

h

2

p_ = 200 GeV

 CALO jets JPT jets

PF jets

Absolute (vs. p_T) JEC

□ Measured in back-to-back γ +jet and Z(->ee/µµ)+jet events using Missing E_T Projection Fraction (MPF) method

$$R_{MPF} \equiv rac{R_{recoil}}{R_{\gamma}} = 1 + rac{ec{E}_T^{miss} \cdot ec{p}_{T,\gamma}}{\left(p_{T,\gamma}
ight)^2}$$

 \square P_T-balancing method used for cross-checks.

MPF method ideally suited for PFJets

 the measurement performed exclusively for PFJets and then "transferred" to the other jet types by direct jet-by-jet matching

- □ Measured response in data/MC corrected for ISR+FSR by extrapolating 2^{nd} jet P_T to zero.
- Final (ISR+FSR corrected) response lower in data by 1.5 % compared to MC.
- Results consistent between three calibration samples.

Absolute JEC Uncertainties

MPF method

- secondary jets
- flavor mapping from photon+jet to QCD composition
- parton correction
- QCD background
- proton fragments
- Photon energy scale
- MC extrapolation beyond the reach of the measurement
 - single particle response
 - Fragmentation modeling
- Average offset
- Residuals
 - MCtruth closure
 - jet-by-jet-matching
- □ flavor dependence

Total JEC Uncertainties

Jet Energy resolutions

- soft-radiation correction for both methods/samples
- Particle level imbalance correction in p_T asymmetry method
- Genjet-γ imbalance correction in p_T balancing method
- Measurement systematics
 - the bias corrections
 - MC closure
 - data/MC scaling

Jet Energy Resolutions – Core Measurements

Jet Energy Resolutions – Tail Measurement

 \Box Resolution tails measured from both dijet and γ +jet events.

Counting events in tail regions of asymmetry/p_T balancing distributions

 $f_A = \frac{Events in window}{total events}$

□ Data/MC ratios for f_A measured after adjusting MC core distribution to match it to data.

Summary

16

□ In-situ measurement of the Jet Energy Scale in CMS is in good agreement with the simulation.

- ➢ jet calibration is based on MC simulation with small residual corrections to account for the small differences between data and MC.
- the calibration chain also includes an offset corrections removing the additional energy inside jets due to Pile-Up.

□ For all jet types, total Jet Energy Scale uncertainty is smaller than 3% for p_T >50 GeV in the $|\eta|$ <3 region.

- \Box Jet energy resolutions have been studied in dijet and γ +jet samples.
 - estimates of the core as well as the tails of the jet energy resolutions agree between the two samples
 - the core of the measured resolution in data is somewhat broader than in simulation