
First SND detector results on hadron cross sections at VEPP-2000 e⁺e⁻ - collider

T.V.Dimova
On behalf of SND
group

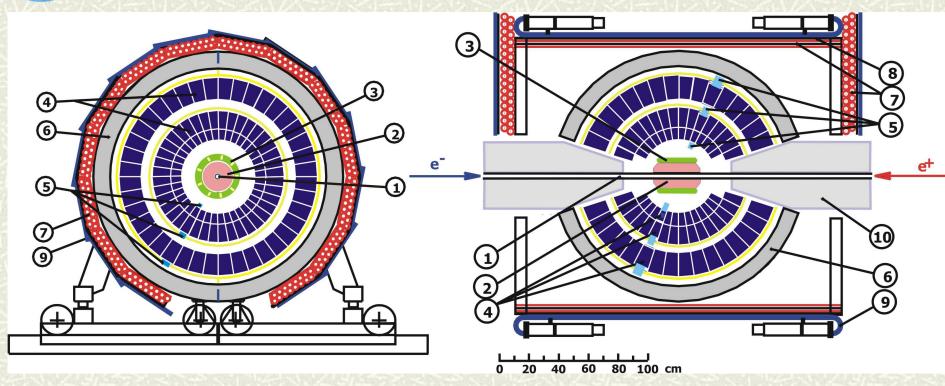
Novosibirsk

VEPP-2000 Collider

Main parameters:

- collision time 82 ns
- beam current 0.2 A
- bunch length 3.3 cm
- perimeter 24.4 m
- Energy spread 0.7 MeV
- $\beta_x \approx \beta_z = 6.3$ cm
- $^{\circ}$ L $\simeq 1.10^{32}$ (2E=2.0 GeV)
- \bullet L=10³¹cm⁻²c⁻¹ (2E=1.0 GeV)

Achieved (2011):


 $L\sim0.8\cdot10^{31}cm^{-2}c^{-1}$ (2E=1.0 GeV) $L\sim2\cdot10^{31}cm^{-2}c^{-1}$ (2E=2.0 GeV)

designed

 $\Delta L(1 y) = 1 \text{ fb}^{-1}$.

SND for VEPP-2000

NIM A449 (2000) 125-139

1 - beam pipe, 2 - tracking system, 3 - aerogel cherenkov counter, 4 - NaI(TI) crystals, 5 - phototriodes, 6 - iron muon absorber, 7-9 - muon detector, 10 - focusing solenoids.

SND general parameters

Calorimeter:

1632 Nal(Tl) crystals VPT reading 13.5 X0 solid angle - 90% from 4π

$$\Delta \phi \times \Delta \theta = 9^{\circ} \times 9^{\circ}$$

Energy resolution:

$$\frac{\sigma_{\rm E}}{\rm E} = \frac{4.2\%}{\sqrt[4]{\rm E(GeV)}}$$

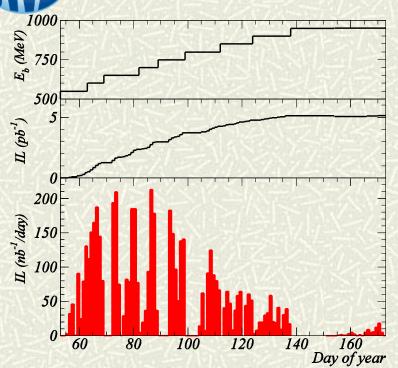
Angular resolution:

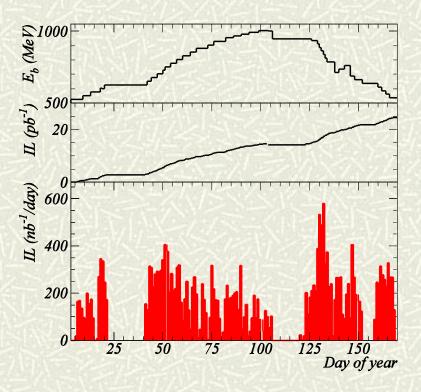
$$\sigma_{\varphi} = \frac{0.82^{\circ}}{\sqrt{E(GeV)}} \oplus 0.63^{\circ}$$

Tracking system:

9-layer cylindrical drift chamber with 24-jet type cells solid angle - 94% from 4π 90% Ar + 10% CO₂ gas mixture particle identification at p<300 MeV/c using dE/dx

Angular resolution:

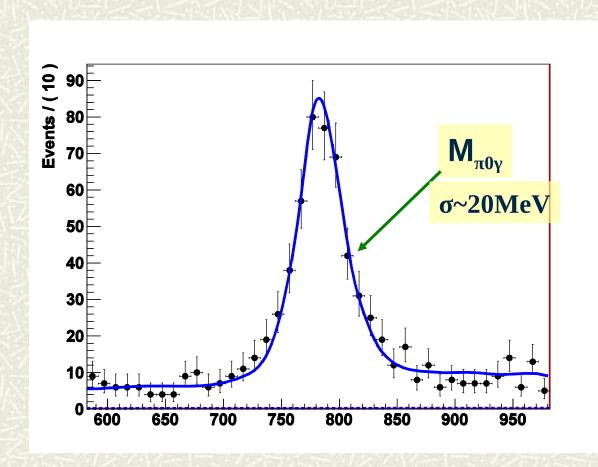

$$\sigma_{\varphi} = 0.55^{\circ}$$
 $\sigma_{\theta} = 1.2^{\circ}$


Spacial resolution:

$$\sigma_{\rm R} = 0.12 \, \text{cm}$$
 $\sigma_{\rm z} = 0.45 \, \text{cm}$

Experiments 2010 and 2011

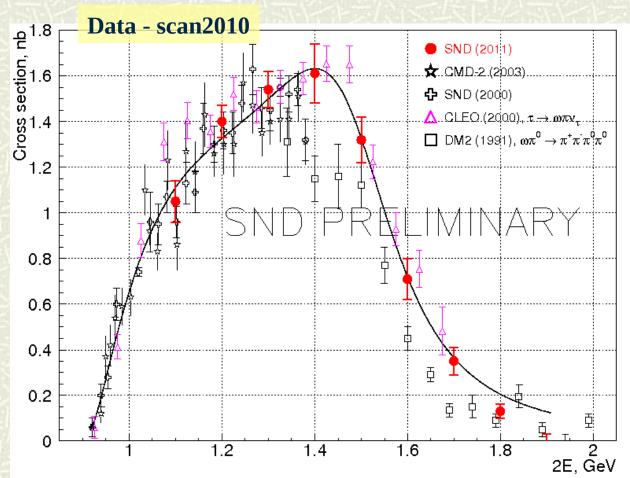
	Energy Region, GeV	Energy step, MeV	Integrated luminosity, pb ⁻¹
scan2010	1.1-1.9	100	5
scan2011	1.05-2.0	25	25



VEPP-2000 Physical program

- ◆ 1. Precise measurement of the quantity
 - $R=\sigma(e^+e^- \rightarrow hadrons) / \sigma(e^+e^- \rightarrow \mu^+\mu^-)$
- 2. Cross section measurements of the processes of e^+e^- -annihilation into hadrons: $e^+e^- \rightarrow 2h$, 3h, 4h ..., $h=\pi$,K, η , ...
- 3. Study of 'excited' vector mesons: ρ' , ρ'' , ω' , ω'' ϕ' ,...
- 4. CVC tests: comparison of $e^+e^- \rightarrow hadrons$ cross section with $\tau \rightarrow v_{\tau} + hadrons$ decay spectra
- ◆ 5. Study of nucleon antinucleon pair production $e^+e^- \rightarrow n\overline{n}$, $p\overline{p}$ and nucleon electromagnetic form factors, search for NNbar resonances.
- ◆ 6. Hadron production in 'radiative return' (ISR) processes:
 - $e^+e^- \rightarrow \gamma^*\gamma, \gamma^* \rightarrow hadrons$
- ▶ 7. Two photon physics $e^+e^- \rightarrow e^+e^- + hadrons$
- 8. Test of high order QED $2 \rightarrow 4, 5$

Process $e^+e^- \rightarrow \omega \pi^0 \rightarrow \pi^0 \pi^0 \gamma$


Cuts:

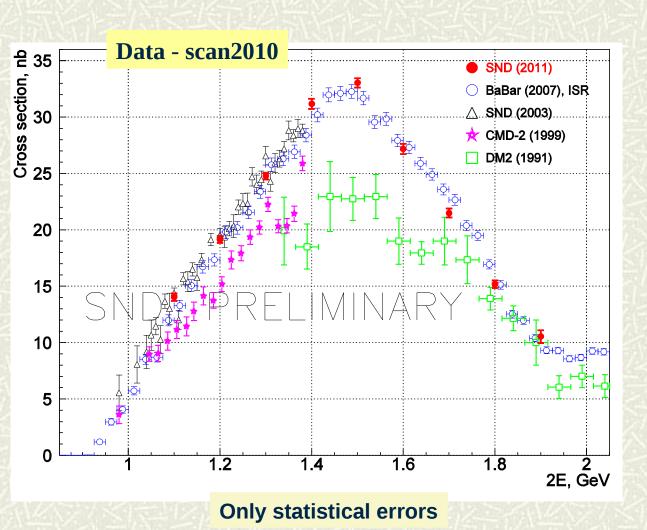
- at least 5 γ - no charged particles - total energy depos. > E_{beam} - kinemat. reconstruction: $\chi^2_{5\gamma} < 30$; $\chi^2_{\pi0\pi0\gamma} - \chi^2_{5\gamma} < 10$; $|M_{\pi0\gamma} - M_{\omega}| < 100 \text{ MeV}$

Fitting: sum of $\rho(770)$ and $\rho(1450)$

Process $e^+e^- \rightarrow \omega \pi^0 \rightarrow \pi^0 \pi^0 \gamma$

Cuts:

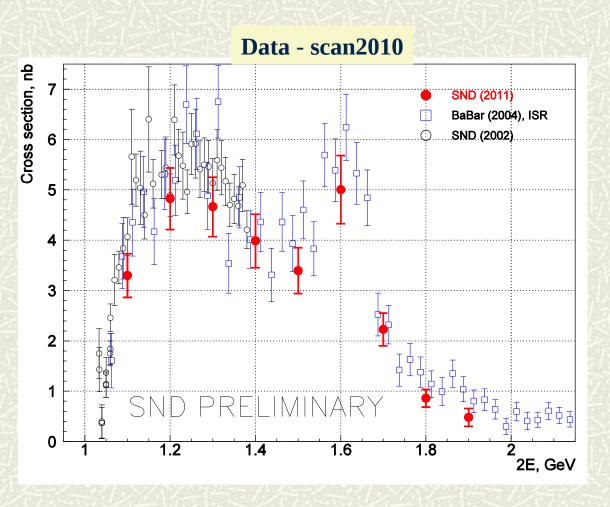
- at least 5γ
- no charged particles
- total energy depos. > E_{beam}
- kinemat. reconstruction:


$$\chi^{2}_{5\gamma} < 30; \quad \chi^{2}_{\pi0\pi0\gamma} - \chi^{2}_{5\gamma} < 10; \\ |M_{\pi0\gamma} - M_{\omega}| < 100 \text{ MeV}$$

Fitting:

sum of $\rho(770)$ and $\rho(1450)$

Process $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$


Cuts:

- at least 2 charged particles and 4 photons - 2 tracks are central kinematic reconstruction: $\chi^2 < 40;$ $M_{\pi 0} \text{ in } 70\text{-}200 \text{ MeV}$

The bump is a sum of contributions from $\rho(770)$, $\rho(1450)$ and $\rho(1700)$ decays

Process $e^+e^- \rightarrow \pi^+\pi^-\pi^0$

Cuts:

– at least 2 central charged particles

-2 or 3γ

 $-\,\Delta\phi_{\text{ch.part.}}\!\!>\!\!10^{\circ}$

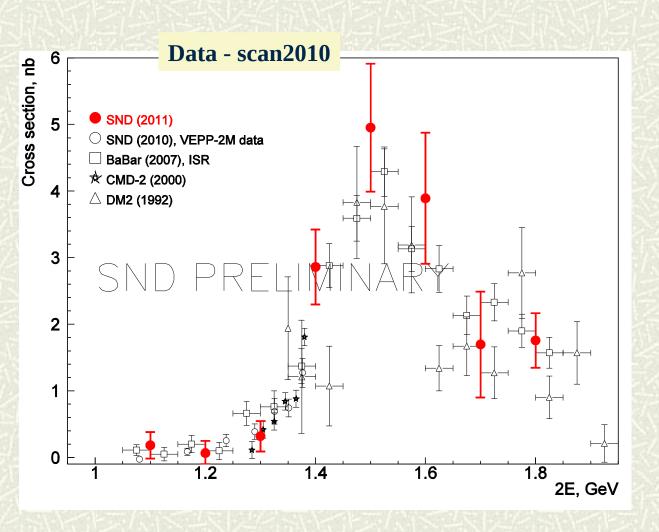
 $-\Delta\Omega_{\text{ch.part.}}\!>\!\!40^{\circ}$

En.depos. of ch.part.<E_{beam}

Total en.depos. $-(0.3-0.8)E_{beam}$

Kinematic reconstruction:

interaction point - χ^2_r < 40;


 $\pi^{+}\pi^{-}\gamma \gamma - \chi^{2} < 30;$

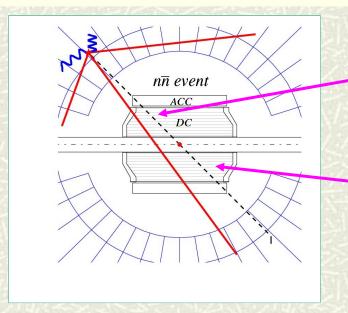
Fittng of $M_{\pi 0}$

(effect+background)

Process $e^+e^- \rightarrow \eta \pi^+\pi^-$

Cuts:

- 2 central charged particles
- 2 photons
- $-\theta_{charged}$ (22.5°-157.5°)
- $-\,\theta_{\text{photon}}\,(36^{\circ}\text{-}144^{\circ})$


kinematic reconstruction

$$(\pi^+\pi^-\gamma \gamma): \chi^2 < 20$$

Process $e^+e^- \rightarrow n\overline{n}$ (I)

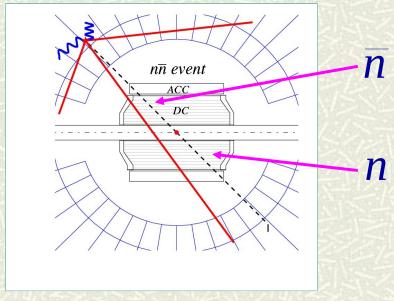
Picture of expected event cuts:

Events features:

- No signal from n
- "star" from annihilation point of n in Cherenkov counters or calorimeter

- no central charged tracks
- no collinear clusters in calorimeter
- no signals in muon system
- signals in 3 calorimeter layers
- crystals in calorimeter are not located along one line
- no events with main en.dep. on small angles (θ <36° or θ >144°) and full pulse in calorimeter directed into small angles
- limitations on cluster quality and total pulse in calorimeter
- total en.dep in the range 1.0-1.8GeV
- cosmic suppression using event time

23.07.2011

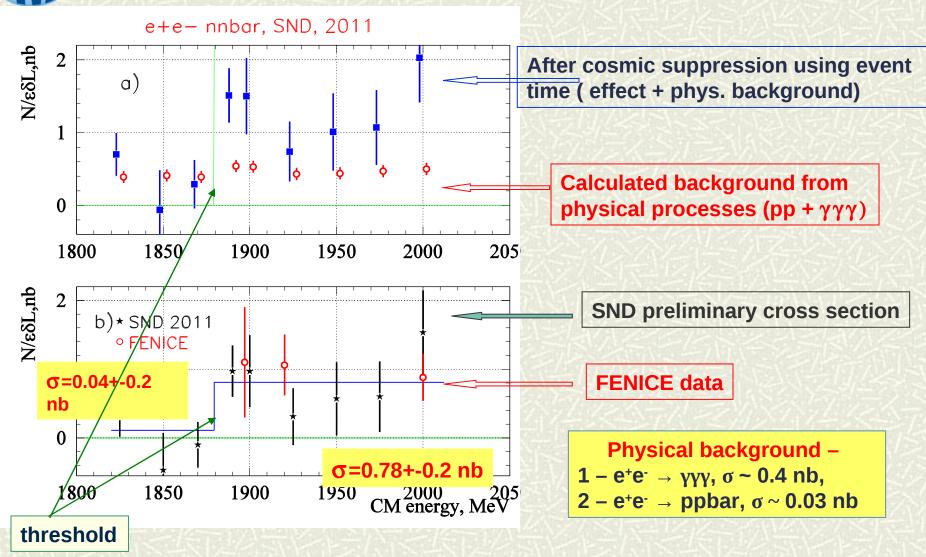

EPS-HEP2011

n

Process e

Picture of expected event

Events features:

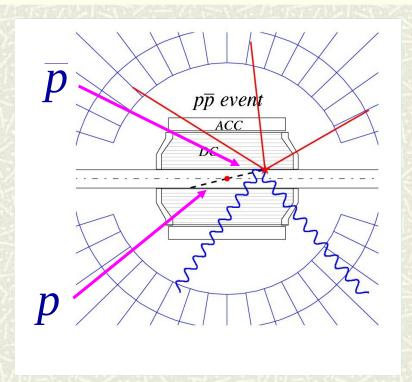

- No signal from n
- "star" from annihilation point of \overline{n} in Cherenkov counters or calorimeter

XHIGZ 02 @ sndhw3.inp.nsk.su 000 FLT1-10/0000011111 Calc.Trig/000000000 Br/000000 B1/000002 R-Phi projection XHIGZ 06 @ sndhw3.inp.n... ● ○ ● XHIGZ 04 @ sndhw3.inp.nsk.su FLT1—10/0000011111 Calc.Trig/0000000000 Br/000000 B1/000

23.07.2011

Process $e^+e^- \rightarrow n\overline{n}$ (II)

23.07.2011


EPS-HEP2011

14

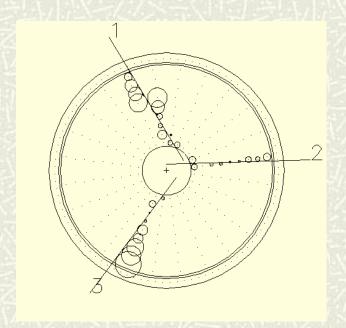
Process $e^+e^- \rightarrow p\bar{p}$ (I)

Picture of expected event at the threshold

Events features (at the threshold):

- No signal from P

Events features (above the threshold):

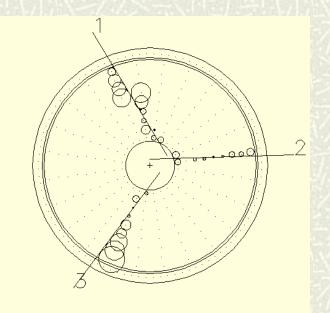

- charged track and no energy deposition for $\,\mathcal{D}\,$
- charged track and "star" from annihilation point in Cherenkov counter for \overline{p}

Process $e^+e^- \rightarrow p\overline{p}$ (II)

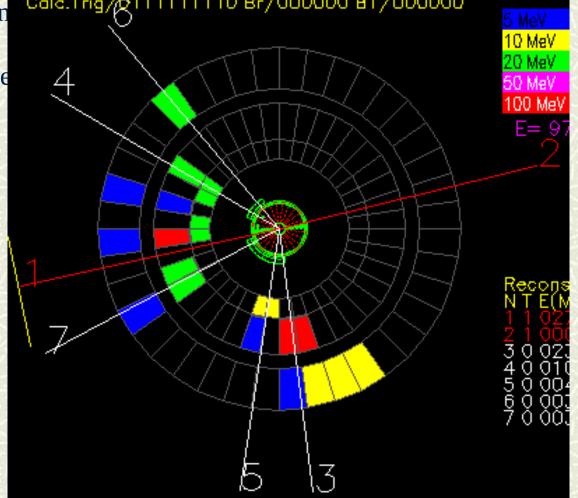
Cuts(at the threshold):

- 3 or more charged particles
 with common point on vacuum
 tube
- total en. deposition > 650MeV

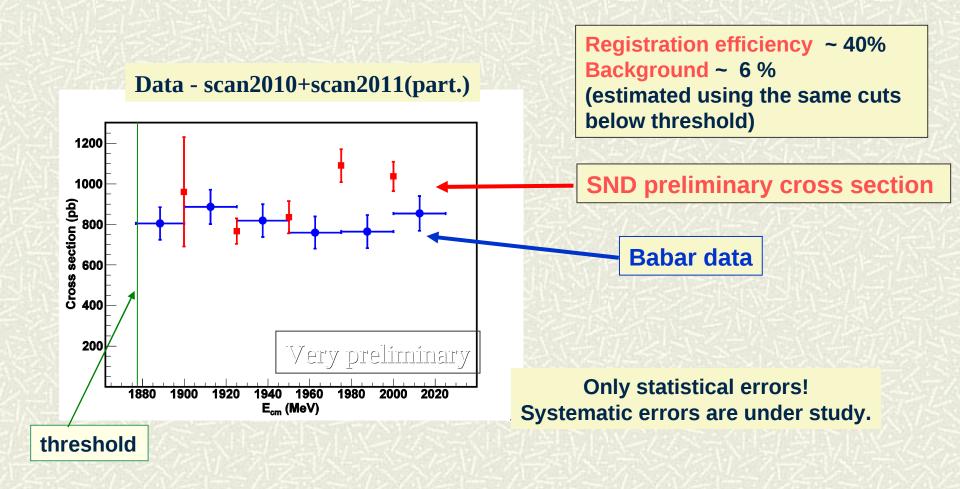
Cuts(above the threshold):


- 2 or more charged particles
- 2 central collinear tracks with large dE/dx in tracking system and $36^{\circ} < \theta < 144^{\circ}$
- total en. deposition > 650MeV
- distribution of energy deposition in calorimeter is not located along one line

Process $e^+e^- \rightarrow p\overline{p}$ (II)


Cuts(at the threshold):

- 3 or more charged particles with common point on vacuun tube
- total en. deposition > 650Me


23.07.2011

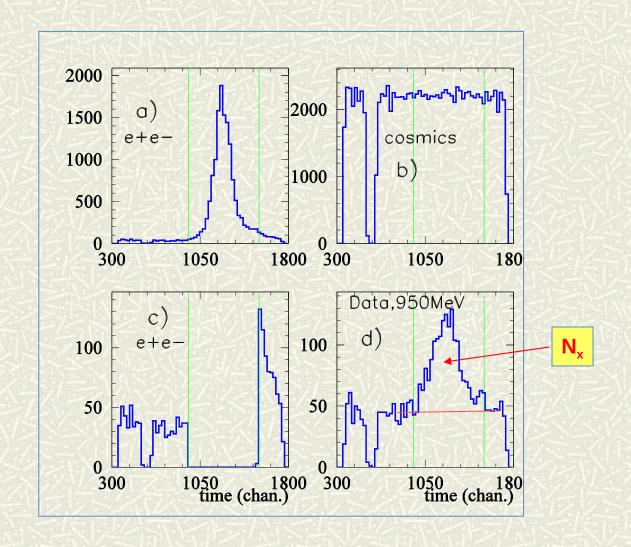
Cuts(above the threshold): FLT1-10/0111111110 Cala.Trig/@111111110 Br/000000 B1/000000

Process $e^+e^- \rightarrow p\overline{p}$ (III)

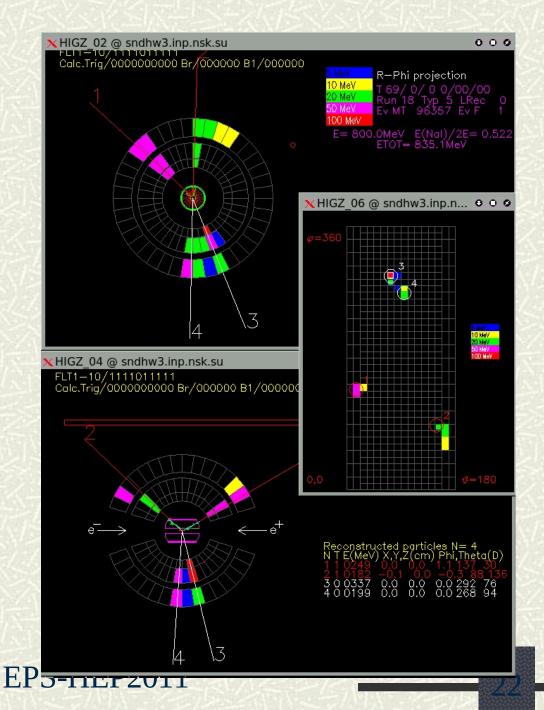
23.07.2011

EPS-HEP2011

Conclusions && Plans


- 1. First data runs were performed on VEPP-2000 with SND detector (approximately 30 nb collected at the energy range 1.05 2.0 GeV)
- 2. Preliminary results on different hadron cross sections were obtained ($e^+e^- \rightarrow \omega \pi^0$, $\pi^+\pi^-\pi^0$, $\pi^+\pi^-\pi^0$, η $\pi^+\pi^-$, $n\overline{n}$, $p\overline{p}$)
- 3. The results are in agreement with previous measurements
- 4. Obtaining results based on full available statistics (30 pb⁻¹)
- 5. More hadron processes to study ($e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-$, K_SK_L , $\eta\gamma$, etc)
- 6. Analyses of systematical errors from all detector systems.
- 7. New run for $e^+e^- \to n\overline{n}$, $p\overline{p}$ study with higher luminosity and with smaller energy step (5 points with 25 MeV step \to 25 points with 5 MeV step)

Thank you



Cosmic suppression using event time

Typical view of $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ event

