

Status of the KATRIN experiment

Europhysics Conference on High-Energy Physics (EPSHEP) 2011/07/22, Grenoble

Sebastian Fischer for the KATRIN collaboration

Karlsruhe Institute of Technology

Karlsnine

hinum Neutrin

tpeniment

Status of the KATRIN experiment

Europhysics Conference on High-Energy Physics (EPSHEP) 2011/07/22, Grenoble

Sebastian Fischer for the KATRIN collaboration

Motivation of m_v

measurement

KATRIN experiment

Measurement principle

Status

Karlsruhe Institute of Technology

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Motivation for neutrino mass measurement

Cosmology

 $\Sigma m_v < (0.6 - 2) \text{ eV/c}^2$

0νββ decay

Mass hierarchy

Neutrino oscillations:

Atmospheric neutrinos: $(\Delta m_{32})^2 \cong 2.4 \times 10^{-3} \text{ eV}^2/\text{c}^4$ Solar neutrinos:

 $(\Delta m_{21})^2 \cong 7.6 \times 10^{-5} \text{ eV}^2/\text{c}^4$

 $\rightarrow m_v \neq 0$

(PDG08)

(95 % C.L.) (Hannestad)

Motivation for neutrino mass measurement

Cosmology

 $0\nu\beta\beta$ decay

(Heidelberg-Moscow, IGEX)

 $\Sigma m_v < (0.6 - 2) \text{ eV/c}^2$ (95 % C.L.) (Hannestad)

Direct beta decay measurements (Mainz, Troitsk):

 $m_v < 2 \text{ eV/c}^2 (95 \% \text{ C.L.})$ (PDG08)

Improved direct measurement necessary

Mass hierarchy

Neutrino oscillations:

Atmospheric neutrinos: $(\Delta m_{32})^2 \cong 2.4 \times 10^{-3} \text{ eV}^2/\text{c}^4$

Solar neutrinos:

$$(\Delta m_{21})^2 \cong 7.6 \times 10^{-5} \text{ eV}^2/\text{c}^4$$

 $\rightarrow m_v \neq 0$

(PDG08)

Tritium beta decay

$$\frac{\mathrm{dN}}{\mathrm{dE}} = \mathbf{C} \cdot \mathbf{F}(\mathbf{E}, \mathbf{Z}) \cdot \mathbf{p}(\mathbf{E} + \mathbf{m}_{\mathbf{e}}) \cdot (\mathbf{E}_{0} - \mathbf{E}) \cdot \sqrt{(\mathbf{E}_{0} - \mathbf{E})^{2} - \mathbf{m}_{v}^{2}} \quad \text{observable:} \quad m_{\nu_{e}}^{2} = \sum_{i=1}^{3} |U_{ei}|^{2} m_{i}^{2}$$

$$\frac{\mathrm{dN}}{\mathrm{dE}} = \mathbf{C} \cdot \mathbf{F}(\mathbf{E}, \mathbf{Z}) \cdot \mathbf{p}(\mathbf{E} + \mathbf{m}_{\mathbf{e}}) \cdot (\mathbf{E}_{0} - \mathbf{E}) \cdot \sqrt{(\mathbf{E}_{0} - \mathbf{E})^{2} - \mathbf{m}_{\mathbf{v}}^{2}} \xrightarrow{\text{observable:}} m_{\nu_{e}}^{2} = \sum_{i=1}^{3} |U_{ei}|^{2} m_{i}^{2}$$

Requirements:

- High tritium activity
 → Strong source (> 1 GBq)
- High energy resolution (< 1 eV)</p>
- Low background + small systematic uncertainties

KATRIN experiment: 200 meV sensitivity (90 % C.L)

The KATRIN experiment

(KArlsruhe TRItium Neutrino experiment, location: Karlsruhe, Germany)

adiabatic guiding of electrons on meV level

4 2011/07/23 EPSHEP 2011, Grenoble Sebastian Fischer

Windowless gaseous tritium source (WGTS)

- Closed tritium loop "Inner loop"
 - 40g tritium / day = $1.5 \cdot 10^{16}$ Bq /day
 - > 95% tritium purity
 - Pressure stabilization $\Delta p/p < 0.1\%$

5

Status of the WGTS (1)

Demonstrator on site Test measurements nearly finished

DP1

10

Status of the WGTS (1)

Demonstrator on site Test measurements nearly finished

26

Temperature stability in mK range → Improvement by 10-20 w.r.t. specification

Status of the WGTS (1)

Demonstrator on site Test measurements nearly finished

26

Temperature stability in mK range → Improvement by 10-20 w.r.t. specification

Next step: Upgrade Demonstrator → WGTS

Status of the WGTS (2)

- Inner Loop system
 - Pressure fluctuations < 0.02%
 → 5 times better than specified
- Laser Raman (LARA) system
 - Study of systematic effects
 - Nonstop test of LARA over > 21 days

7

S. Fischer, et al., Fusion Sci. Technol., in press (2011)

Status of the WGTS (2)

- Inner Loop system
 - Pressure fluctuations < 0.02%
 → 5 times better than specified
- Laser Raman (LARA) system
 - Study of systematic effects
 - Nonstop test of LARA over > 21 days

7

0.1% precision (1 σ) reached \rightarrow KATRIN requirements fulfilled

S. Fischer, et al., Fusion Sci. Technol., in press (2011)

Transport section

- Adiabatic guidance of electrons to spectrometers
- Reduction of tritium flow rate by $>10^{14}$

8

Status of the transport section

- DPS2-F test program
 - Measurement of reduction factor ongoing
 - Measurement of electron guiding properties
- Cryogenic pumping section
 - Delivery to KIT in Spring 2012

The MAC-E spectrometers

Magnetic Adiabatic Collimation with Electrostatic Filter

adiabatic transformation $\mathsf{E}_{\perp} \to \mathsf{E}_{\parallel}$ (A. Picard et al., Nucl. Instr. Meth. 63 (1992) 345)

Magnetic moment $\mu = E_t / B = const.$

Magnetic adiabatic collimation

 \rightarrow Large solid angle (2 π)

The MAC-E spectrometers

(A. Picard et al., Nucl. Instr. Meth. 63 (1992) 345)

Magnetic moment $\mu = E_t / B = const.$

Magnetic adiabatic collimation \rightarrow Large solid angle (2 π)

Status of the pre-spectrometer

- Ground electrode design finished
- Radon-219 background identified and reduced
 - → Background reduction
- Next step: Transfer to final position in spring 2012

Status of the main spectrometer

≯ B

The detector system

- Segmented Si-PIN diode
- Detection of transmitted beta decay electrons (Hz to kHz) PINCH MAGNET
- Low intrinsic background (< 1 mHz) alectrons
- Commissioning ongoing

VACUUM, CALIBRATION SYSTEM

100 mm

S ORYOMAGNETIOS INC

Summary

- Measurement of m_v with 200 meV/c² design sensitivity (90 % C.L.)
- Electron spectroscopy of tritium beta decay
- Commissioning of components ongoing
- Many central parameters better than specified
- Many systematic effects understood
- Start of tritium measurements
 1 year after delivery of WGTS

EPSHEP 2011, Grenoble Sebastian Fischer

The rear section

- Purpose: Calibration and monitoring
 - Definition of electrostatic potential of WGTS by rear wall
 - Source activity monitoring
 - Measurement of gas column density with electron gun

2 phase Ne cooling cycle

KATRIN Sensitivity

