Standard Model Higgs Boson Search Combination at CDF

Adrian Buzatu, McGill University On behalf of the Collider Detector at Fermilab

> EPS-HEP 2011 22 July 2011

SM Higgs Boson Searches

- Motivation
- □ Previous Higgs Exclusions
- Low Mass Searches
- □ High Mass Searches

SM Higgs Boson Combination at CDF

- □Summary of Searches
- □ Systematic Uncertainties
- □ Statistical Inference
- Expected and Observed Upper Limits

The Higgs Boson

Motivation

- The only elementary particle predicted by the Standard Model not yet observed or refuted
- □ Predicted by the Higgs mechanism in 1964, which explains
 - o the spontaneous symmetry breaking
 - $\circ\;$ the masses of the electroweak bosons, the masses of fermions

> The Higgs boson characterized only by its mass

- LEP direct searches
 - \circ exclude masses < 114.4 GeV/c² at 95% CL
- Previous Tevatron direct searches
 - $\circ~$ exclude masses in [158-173] GeV/c² at 95% CL
- □ Indirect electroweak fits
 - $\,\circ\,$ exclude masses > 185 GeV/c² at 95% CL

Higgs production is a very rare process

Divide, Conquer, Combine

Divide in channels based on signature

- Optimize each channel individually
- Heavy use of multivariate techniques
 - Artificial Neural Networks
 - Boosted Decision Trees
 - Support Vector Machines
- Do not see an excess of signal, so set limits
 - Previous talks by Karolos Potamianos, Azzedine Kasmi, Antonio Limosani, Boris Tuchming
- Combine all channels and set combined CDF limits in the range [100-200] GeV/c²
- $\hfill \Box We$ then combine with all D0 channels
 - Plenary talk by Eric James on Tevatron combination

CDF Combination Channels 🐯 McGill

0	WH→lvbb (2-jet, Neural Networks)	L=7.5 fb ⁻¹
0	WH→lvbb (3-jet, Matrix Elements)	L=5.6 fb ⁻¹
0	VH→MET+bb	L=7.8 fb ⁻¹
0	ZH→11 bb	L=7.5 fb ⁻¹ (eebb) L=7.9 fb ⁻¹ (μμbb)
0	VH, VBF, ggH $\rightarrow 2jet+H \rightarrow \tau\tau$	L=6.0 fb ⁻¹
0	VH,VBF $\rightarrow 2jet+H\rightarrow bb$	L=4.0 fb ⁻¹
0	Н→үү	L=7.0 fb ⁻¹
0	gg→H→WW→hvhv	L=8.2 fb ⁻¹ (W \rightarrow e,µ+v) L=8.2 fb ⁻¹ (taus)
0	ttH(l+MET+jets)	L=7.5 fb ⁻¹
0	ttH(No lepton)	L=5.7 fb ⁻¹
0	H→ZZ→1111	L=8.2 fb ⁻¹
0	$VH \rightarrow 2\tau + lepton$	L=6.2 fb ⁻¹

Low Mass Searches

□Masses smaller than 135 GeV/c²

□Higgs decays mostly to bottom quark pairs

□Single Higgs production (gluon fusion)

- Largest cross section
- $_{\odot}$ Not feasible for bottom quark decay:10⁹ more QCD background
- $_{\odot}$ Still, use it for Higgs decays to photon or tau lepton pairs

□Associated production (WH, ZH, ttH)

- $_{\odot}$ Take advantage of the leptonic decays of the W or Z bosons
- Charged-lepton and missing-transverse-energy based triggers
- $_{\odot}$ Identify jets that originate from bottom quarks

SM Higgs Boson CDF Combination EPS-HEP 2011

Adrian Buzatu

 \Box WH \rightarrow lvbb search 2jet b-tagging category with best s/b ratio; all charged leptons combined

Artificial neural network as final discriminant trained for a Higgs boson mass of 115 GeV/c²

S/B Ratio Plots for 115 GeV/c² McGill

□Sum final discriminants after rebin in log(s/b)

o Sum all independent channels

Then subtract backgrounds from data

□No excess above backgrounds, so we set limits

SM Higgs Boson CDF Combination EPS-HEP 2011

Adrian Buzatu

High Mass Searches

Masses larger than 135 GeV/c²
 Higgs decays mostly to W and Z boson pairs
 Single Higgs production (gluon fusion)

 Most sensitive channel to the SM Higgs
 2 charged leptons; 0, 1 or 2 and more jets

Example of Discriminant

□ H→ WW : 2 oppositely-charged leptons, at least 2 jets
 □ Artificial neural network as final discriminant trained for a Higgs boson mass of 165 GeV/c²

S/B Ratio Plots for 165 GeV/c² to McGill

□Sum final discriminants after rebin in log(s/b)

o Sum all independent channels

Then subtract backgrounds from data

□No excess above backgrounds, so we set limits

SM Higgs Boson CDF Combination EPS-HEP 2011

Limit Setting & Systematic Uncertainties

Bayesian approach with **Poisson** statistics

- Rate and shape systematic uncertainties are introduced as **nuisance parameters**
- **Rate**: uncertainty on the total normalizations
- **Shape**: uncertainty on bin-by-bin normalizations
 - $_{\odot}$ Use full discriminant shapes to extract the most information

Correlated among various analyses

 $_{\odot}$ Charged lepton, trigger, b-tagging efficiencies

 $_{\odot}$ Luminosity, background & signal cross sections

Uncorrelated among various analyses

- $_{\odot}$ Fake object identification (ex: jets faking electrons and MET)
- Data-driven background modelling

Most up-to-date cross sections, branching ratios, and their uncertainties

Consider three independent scale variations for gluon

fusion Higgs production

- o Beam, soft and hard
- o Berger, Marcantonini, Stewart,
- o Tackmann, Waaleweijn
- http://arxiv.org/abs/arXiv:1012.4480
- Stewart and Tackmann, arXiv:1107.2117
- Current prescription BNL accord

Branching ratio uncertainties

- $_{\odot}$ From $\alpha_{s},$ and masses of bottom and charm quarks
- Baglio and Djouadi, JHEP 1103:055 (2011)

SM I

SM Higgs Boson Limits - 1

CDF Run II Preliminary, $L \le 8.2 \text{ fb}^{-1}$

14

SM Higgs Boson Limits - 2 🐯 McGill

Exclude at 95% CL: [100.0 -104.5] & [156.7-173.8] GeV/c² □ Expect to exclude at 95% CL: [156.5-173.7] GeV/c²

CDF Run II Preliminary, $L \le 8.2$ fb⁻¹

Adrian Buzatu SM Higgs Boson CDF Combination EPS-HEP 2011

Trajectory of Sensitivity

16

Sensitivity improved continuously more than just by increasing the integrated luminosity; showing 115 and 160 GeV/c²

Conclusions

- □CDF Collaboration, up to 8.2 fb⁻¹
- □ Search for the Standard Model Higgs Boson
- □Very many channels
- □None sees an excess of signal over backgrounds
- We combine all channels and use a Bayesian statistical approach to compute 95% CL upper limits on the cross section of the Higgs boson
- □We expect to exclude at 95% CL Higgs masses in the range : [157.0-172.2] GeV/c²
- □We exclude at 95% CL Higgs masses in the ranges [100.0 -104.5] & [156.5-173.7] GeV/c²
- □ Stay tuned for the Tevatron combination result!

Backup Slides

SM Higgs Boson CDF Combination EPS-HEP 2011 Adrian Buzatu

18

Statistical Approach

Bayesian Posterior Probability

$$\begin{split} p(R|\vec{n}) &= \frac{\int \int d\vec{s} d\vec{b} L(R,\vec{s},\vec{b}|\vec{n}) \pi(R,\vec{s},\vec{b})}{\int \int \int dR d\vec{s} d\vec{b} L(R,\vec{s},\vec{b}|\vec{n}) \pi(R,\vec{s},\vec{b})} \Rightarrow \int_{0}^{R_{0.95}} p(R|\vec{n}) dR = 0.95 \\ R &= (\sigma \times BR) / (\sigma_{SM} \times BR_{SM}), \ R_{0.95} : 95\% \text{ Credible Level Upper Limit} \\ \vec{s}, \vec{b}, \vec{n} &= s_{ij}, b_{ij}, n_{ij} (\text{\# of signal, background and observed events in } j\text{-th bin for } i\text{-th channel}) \end{split}$$

 $\pi: \mathsf{Bayes'}$ prior density

Combined Binned Poisson Likelihood

$$L(R, ec{s}, ec{b} | ec{n}) = \prod_{i=1}^{N_{ ext{channel}}} \prod_{j=1}^{N_{ ext{bin}}} rac{\mu_{ij}^{n_{ij}} e^{-\mu_{ij}}}{n_{ij}!}$$

Principle of ignorance

- for the number of higgs events (instead of higgs Xsec)

$$\pi(R,\vec{s},\vec{b}) = \pi(R)\pi(\vec{s})\pi(\vec{b}) = s_{tot}\theta(Rs_{tot})\pi(\vec{s})\pi(\vec{b})$$

 $s_{tot} = \Sigma_{i,j} s_{ij}$: Total number of signal prediction

 $\pi(x) = G(x|\hat{x}, \sigma_x)$ (x = s, b) \hat{x} : expected mean, σ_x : total uncertainty

Very Many Channels

cdf15 <> CDF VH->MET bb 1S 7.8 fb-1 cdf16 <> CDF VH->MET bb SS 7.8 fb-1 cdf17 <> CDF VH->MET bb SJ 7.8 fb-1 cdf28 <> CDF HWW 8.2fb HighSB0J cdf29 <> CDF HWW 8.2fb LowSB0J cdf30 <> CDF HWW 8.2fb HighSB1J cdf31 <> CDF HWW 8.2fb LowSB1J cdf32 <> CDF HWW 8.2fb 2JOS cdf56 <> CDF WH WWW 8.2 fb-1 like-sign cdf57 <> CDF H->WW 8.2 fb-1 low-mll cdf64 <> CDF WH ME 5.6 fb-1 3J SVJP cdf65 <> CDF WH ME 5.6 fb-1 3J SVJP loose cdf66 <> CDF WH ME 5.6 fb-1 3J SVnoJP cdf67 <> CDF WH ME 5.6 fb-1 3J SVnoJP loose cdf68 <> CDF WH ME 5.6 fb-1 3J SVSV cdf69 <> CDF WH ME 5.6 fb-1 3J SVSV loose cdf84 <> CDF H->WW Trilepton NoZ 8.2 fb-1 cdf85 <> CDF H->WW Trilepton InZ 1jet 8.2 fb-1 cdf86 <> CDF H->WW etau 8.2 fb-1 cdf87 <> CDF H->WW mutau 8.2 fb-1 cdf101 <> CDF Htautau 2jets 6.0 fb-1 cdf102 <> CDF Htautau 1jet 6.0 fb-1 cdf103 <> CDF jjbb SS 4fb-1 cdf104 <> CDF jjbb SJ 4fb-1 cdf105 <> CDF jjbb VBF SS 4fb-1 cdf106 <> CDF jjbb VBF SJ 4fb-1 cdf112 <> CDF H->gammagamma 7.0 fb-1 CC cdf113 <> CDF H->gammagamma 7.0 fb-1 CP cdf114 <> CDF H->gammagamma 7.0 fb-1 CC Conv cdf115 <> CDF H->gammagamma 7.0 fb-1 CP Conv cdf116 <> CDF Vtautau 111 6.2 fb-1 cdf117 <> CDF Vtautau 11tau 6.2 fb-1 cdf118 <> CDF Vtautau emutau 6.2 fb-1 edf119 - CDF Vtautau Itautau 6.2 fb 1 cdf120 <> CDF Vtautau 1111 6.2 fb-1 cdf121 <> CDF ttH MET+jets 2btag 5.7 fb-1 cdf122 <> CDF ttH MET+jets 3btag 5.7 fb-1 cdf123 <> CDF ttH All 2btag 5.7 fb-1 cdf124 <> CDF ttH All 3btag 5.7 fb-1

cdf125 <> CDF mumubb ST 7.9 fb-1 cdf126 <> CDF mumubb LJP 7.9 fb-1 cdf127 <> CDF mumubb DT 7.9 fb-1 cdf128 <> CDF eebb ST 7.5 fb-1 cdf129 <> CDF eebb LJP 7.5 fb-1 cdf130 <> CDF eebb DT 7.5 fb-1 cdf131 <> CDF WHAM NN 7.5 fb-1 SVTSVT TIGHT with BNN cdf132 <> CDF WHAM NN 7.5 fb-1 SVTJP05 TIGHT with BNN cdf133 <> CDF WHAM NN 7.5 fb-1 SVTnoJP05Roma TIGHT with BNN cdf134 <> CDF WHAM NN 7.5 fb-1 SVTnoJP05noRoma TIGHT with BNN cdf135 <> CDF WHAM NN 7.5 fb-1 SVTSVT PHX with BNN cdf136 <> CDF WHAM NN 7.5 fb-1 SVTJP05 PHX with BNN cdf137 <> CDF WHAM NN 7.5 fb-1 SVTnoJP05Roma PHX with BNN cdf138 <> CDF WHAM NN 7.5 fb-1 SVTnoJP05noRoma PHX with BNN cdf139 <> CDF WHAM NN 7.5 fb-1 SVTSVT ISOTRK with BNN cdf140 <> CDF WHAM NN 7.5 fb-1 SVTJP05 ISOTRK with BNN cdf88 <> CDF H->WW Trilepton InZ 2jet 8.2 fb-1 cdf141 <> CDF WHAM NN 7.5 fb-1 SVTnoJP05Roma ISOTRK with BNN cdf142 <> CDF WHAM NN 7.5 fb-1 SVTnoJP05noRoma ISOTRK with BNN cdf155 <> CDF WH NN 7.5 fb-1 2JET SVTSVT LOOSE ISOTRK cdf156 <> CDF WH NN 7.5 fb-1 2JET SVTJP05 LOOSE ISOTRK cdf157 <> CDF WH NN 7.5 fb-1 2JET SVTnoJP05Roma LOOSE ISOTRK cdf158 <> CDF WH NN 7.5 fb-1 2JET SVTnoJP05noRoma LOOSE ISOTRK cdf159 <> CDF HZZ mLLLL 8.2 fb-1 cdf160 <> CDF ttH 1+5J STSTST 6.3 fb-1 cdf161 <> CDF ttH 1+5J STSTJP 6.3 fb-1 cdf162 <> CDF ttH 1+5J STST 6.3 fb-1 cdf163 <> CDF ttH 1+5J STJPJP 6.3 fb-1 cdf164 <> CDF ttH 1+5J STJP 6.3 fb-1 cdf165 <> CDF ttH 1+5J STSTST 6.3 fb-1 cdf166 <> CDF ttH 1+5J STSTJP 6.3 fb-1 cdf167 <> CDF ttH 1+5J STST 6.3 fb-1 cdf168 <> CDF ttH 1+5J STJPJP 6.3 fb-1 cdf169 <> CDF ttH 1+5J STJP 6.3 fb-1

Results - numbers

m_H	obs	$-2\sigma \exp$	$-1\sigma \exp$	Median exp	$+1\sigma \exp$	$+2\sigma \exp$
(GeV/c^2)	(Limit/SM)	(Limit/SM)	(Limit/SM)	(Limit/SM)	(Limit/SM)	(Limit/SM)
100	0.68	0.51	0.76	1.09	1.53	2.08
105	1.04	0.57	0.84	1.22	1.72	2.36
110	1.62	0.69	0.91	1.29	1.85	2.63
115	1.55	0.70	1.03	1.49	2.12	2.93
120	2.08	0.83	1.16	1.64	2.30	3.18
125	2.02	0.88	1.23	1.75	2.48	3.45
130	2.29	0.87	1.24	1.77	2.48	3.40
135	1.91	0.86	1.20	1.69	2.36	3.24
140	1.88	0.81	1.10	1.55	2.20	3.08
145	1.49	0.70	1.00	1.42	1.98	2.70
150	1.57	0.60	0.87	1.25	1.76	2.42
155	1.10	0.57	0.79	1.11	1.57	2.17
160	0.76	0.44	0.59	0.84	1.17	1.62
165	0.75	0.43	0.56	0.79	1.15	1.66
170	0.86	0.46	0.63	0.90	1.28	1.80
175	1.05	0.59	0.81	1.13	1.57	2.16
180	1.49	0.71	0.98	1.39	1.97	2.75
185	1.68	0.93	1.27	1.76	2.44	3.34
190	2.98	1.06	1.45	2.05	2.88	3.99
195	4.09	1.28	1.72	2.45	3.54	5.07
200	4.23	1.42	1.96	2.80	3.98	5.57

CDF Run II Preliminary SM Higgs Combination, $L \leq 8.2$ fb⁻¹

SM Higgs Boson CDF Combination EPS-HEP 2011

Adrian Buzatu

> Theory gives cross section uncertainties

Higgs + >= 0 jets: 7.05% (Grazzini, de Florian)
Higgs + >= 1 jets: 25.5% (MCFM)
Higgs + >= 2 jets: 33% (Campbell, Ellis, Williams)

> We use: 0 jet, 1 jet, >=2 jets

Jet bin	s0	s1	s2
0 jet	13.4%	-23.0%	0
1 jet	0	35%	-12.7%
>= 2 jets	0	0	33%

Cross Sect. & Branch. Ratios 🐯 McGill

m_H	$\sigma_{gg \rightarrow H}$	σ_{WH}	σ_{ZH}	σ_{VBF}	$\sigma_{t\bar{t}H}$	$B(H \rightarrow b\bar{b})$	$B(H \rightarrow c\bar{c})$	$B(H \to \tau^+ \tau^-)$	$B(H \rightarrow W^+W^-)$	$B(H \rightarrow ZZ)$	$B(H \to \gamma \gamma)$
$({\rm GeV}/c^2)$	(fb)	(fb)	(fb)	(fb)	(fb)	(%)	(%)	(%)	(%)	(%)	(%)
100	1821.8	291.90	169.8	97.2	8.000	79.1	3.68	8.36	1.11	0.113	0.159
105	1584.7	248.40	145.9	89.7	7.062	77.3	3.59	8.25	2.43	0.215	0.178
110	1385.0	212.00	125.7	82.7	6.233	74.5	3.46	8.03	4.82	0.439	0.197
115	1215.9	174.50	103.9	76.4	5.502	70.5	3.27	7.65	8.67	0.873	0.213
120	1072.3	150.10	90.2	70.7	4.857	64.9	3.01	7.11	14.3	1.60	0.225
125	949.3	129.50	78.5	65.3	4.279	57.8	2.68	6.37	21.6	2.67	0.230
130	842.9	112.00	68.5	60.4	3.769	49.4	2.29	5.49	30.5	4.02	0.226
135	750.8	97.20	60.0	55.9	3.320	40.4	1.87	4.52	40.3	5.51	0.214
140	670.6	84.60	52.7	51.8	2.925	31.4	1.46	3.54	50.4	6.92	0.194
145	600.6	73.70	46.3	48.1	2.593	23.1	1.07	2.62	60.3	7.96	0.168
150	539.1	64.40	40.8	44.6	2.298	15.7	0.725	1.79	69.9	8.28	0.137
155	484.0	56.20	35.9	41.2	2.037	9.18	0.425	1.06	79.6	7.36	0.100
160	432.3	48.50	31.4	38.2	1.806	3.44	0.159	0.397	90.9	4.16	0.0533
165	383.7	43.60	28.4	36.0	1.607	1.19	0.0549	0.138	96.0	2.22	0.0230
170	344.0	38.50	25.3	33.4	1.430	0.787	0.0364	0.0920	96.5	2.36	0.0158
175	309.7	34.00	22.5	31.0	1.272	0.612	0.0283	0.0719	95.8	3.23	0.0123
180	279.2	30.10	20.0	28.8	1.132	0.497	0.0230	0.0587	93.2	6.02	0.0102
185	252.1	26.90	17.9	26.9	1.004	0.385	0.0178	0.0457	84.4	15.0	0.00809
190	228.0	24.00	16.1	25.0	0.890	0.315	0.0146	0.0376	78.6	20.9	0.00674
195	207.2	21.40	14.4	23.3	0.789	0.270	0.0125	0.0324	75.7	23.9	0.00589
200	189.1	19.10	13.0	21.6	0.700	0.238	0.0110	0.0287	74.1	25.6	0.00526

CDF Projection for 115 GeV/c² CGill

CDF Projection for 160 GeV/c² CGill

2xCDF Projection for 115 GeV/c McGill

2xCDF Projection for 160 GeV/c McGill

2 sigma Projection for 2xCDF 🐯 McGill

3 sigma Projection for 2xCDF 🐯 McGill

