Finite energy for a Gravitational Potential Falling Slower than 1/r

L. Pilo¹

¹Department of Physics
University of L’Aquila

Grenoble, HEP 2011

Berezhiani-Comelli-Nesti-LP JHEP 0807 130 (2008)
Blas-Comelli-Nesti-LP PRD D80, 044025 (2009)
Comelli-Nesti-LP PRD83 084042 (2011)

Comelli-Nesti-LP arXiv 1105.3010
Potential falling slower than $1/r$?

Suppose we have a solution of Einstein equations with a static potential ϕ,

$$ g_{tt} = -1 - 2\phi $$

that, at large distances, falls off slower than $1/r$.

- The total energy of the system would infinite. According Newton, source’s total mass is \sim flux of $\nabla \phi$

$$ E = \frac{1}{4\pi G} \int_{S_2} d^2 x \, \vec{\nabla} \phi \cdot \vec{n} $$

Finite E only if $\phi \sim 1/r$

- No such a solution in perturbative GR: Green function goes as $1/r$

- Modify gravity, Why do we need a non-Newtonian potential?
Potential falling slower than $1/r$?

Suppose we have a solution of Einstein equations with a static potential ϕ,

$$g_{tt} = -1 - 2\phi$$

that, at large distances, falls off slower than $1/r$.

- The total energy of the system would be infinite. According to Newton, source’s total mass is \sim flux of $\nabla \phi$

$$E = \frac{1}{4\pi G} \int_{S_2} d^2x \, \nabla \phi \cdot \vec{n}$$

Finite E only if $\phi \sim 1/r$

- No such a solution in perturbative GR: Green function goes as $1/r$
- Modify gravity, why do we need a non-Newtonian potential?
Potential falling slower than $1/r$?

Suppose we have a solution of Einstein equations with a static potential ϕ, $g_{tt} = -1 - 2\phi$ that, at large distances, falls off slower than $1/r$.

- The total energy of the system would be infinite. According to Newton, source’s total mass is \sim flux of $\nabla \phi$.

$$E = \frac{1}{4\pi G} \int_{S_2} d^2 x \, \vec{\nabla} \phi \cdot \vec{n}$$

Finite E only if $\phi \sim 1/r$.

- No such a solution in perturbative GR: Green function goes as $1/r$.

- Modify gravity, why do we need a non-Newtonian potential?
Potential falling slower than $1/r$?

Suppose we have a solution of Einstein equations with a static potential ϕ,

$$g_{tt} = -1 - 2\phi$$

that, at large distances, falls off slower than $1/r$

- The total energy of the system would infinite. According Newton, source’s total mass is \sim flux of $\nabla\phi$

$$E = \frac{1}{4\pi G} \int_{S_2} d^2 x \, \vec{\nabla} \phi \cdot \vec{n}$$

Finite E only if $\phi \sim 1/r$

- No such a solution in perturbative GR: Green function goes as $1/r$

- Modify gravity, Why do we need a non-Newtonian potential?
Einstein’s GR

A 90 year-long successful theory
a single free parameter and it works great

- Equivalence principle 10^{-12} level
- Solar system tests (weak field) 10^{-4} level
- Binary pulsar (nonlinear) 10^{-3} level

- however
- CMB + Supernovae data require Dark energy
 $p = \rho \cdot w$, $w < 0$. Expanded acceleration
- Perhaps just a tiny (??) cosmological constant, $w = -1$, $\Lambda \sim (10^{-4} \text{eV})^4$ or a bizarre fluid?
- Is GR an isolated theory? How rigid is GR?
Einstein’s GR

A 90 year-long successful theory
a single free parameter and it works great

- Equivalence principle 10^{-12} level
- Solar system tests (weak field) 10^{-4} level
- Binary pulsar (nonlinear) 10^{-3} level

However

There are some puzzling features at large distances

CMB + Supernovae data require Dark energy
$p = w \rho$,

$w < 0$. Expanded acceleration

Perhaps just a tiny (??) cosmological constant,
$w = -1$,

$\Lambda \sim (10^{-4} \text{eV})^4$ or a bizarre fluid?

Is GR an isolated theory? How rigid is GR?
Einstein’s GR

A 90 year-long successful theory
a single free parameter and it works great

- Equivalence principle 10^{-12} level
- Solar system tests (weak field) 10^{-4} level
- Binary pulsar (nonlinear) 10^{-3} level

however

there are some puzzling features at large distances

CMB + Supernovae data require Dark energy
$p = w \rho$

Perhaps just a tiny (??) cosmological constant,

$w = -1$

$\Lambda \sim (10^{-4} \text{eV})^4$
or a bizarre fluid?

Is GR an isolated theory? How rigid is GR?
Einstein’s GR

A 90 year-long successful theory
a single free parameter and it works great

- Equivalence principle 10^{-12} level
- Solar system tests (weak field) 10^{-4} level
- Binary pulsar (nonlinear) 10^{-3} level

However

CMB + Supernovae data require Dark energy
\[p = w \rho, \quad w < 0. \]

Expanded acceleration
Perhaps just a tiny (??) cosmological constant,
\[w = -1, \quad \Lambda \sim (10^{-4} \text{eV})^4 \]
or a bizarre fluid?

Is GR an isolated theory? How rigid is GR?
Einstein's GR

A 90 year-long successful theory
a single free parameter and it works great

- Equivalence principle 10^{-12} level
- Solar system tests (weak field) 10^{-4} level
- Binary pulsar (nonlinear) 10^{-3} level

however

- there are some puzzling features at large distances
- CMB + Supernovae data require Dark energy
 $\rho = w\rho$, $w < 0$. Expanded acceleration
 Perhaps just a tiny (??) cosmological constant, $w = -1$,
 $\Lambda \sim (10^{-4} \text{ eV})^4$ or a bizarre fluid?
- Is GR an isolated theory ? How rigid is GR ?
Einstein’s GR

A 90 year-long successful theory
a single free parameter and it works great

- Equivalence principle 10^{-12} level
- Solar system tests (weak field) 10^{-4} level
- Binary pulsar (nonlinear) 10^{-3} level

however

- there are some puzzling features at large distances
- CMB + Supernovae data require Dark energy
 $\rho = w\rho$, $w < 0$. Expanded acceleration
 Perhaps just a tiny (??) cosmological constant, $w = -1, \Lambda \sim (10^{-4} \text{ eV})^4$ or a bizarre fluid?
- Is GR an isolated theory? How rigid is GR?
Einstein’s GR

A 90 year-long successful theory
a single free parameter and it works great

- Equivalence principle 10^{-12} level
- Solar system tests (weak field) 10^{-4} level
- Binary pulsar (nonlinear) 10^{-3} level

however.....

- there are some puzzling features at large distances
- CMB + Supernovae data require Dark energy
 $p = w \rho$, $w < 0$. Expanded acceleration
 Perhaps just a tiny (??) cosmological constant, $w = -1$,
 $\Lambda \sim (10^{-4} \text{ eV})^4$ or a bizarre fluid?

- Is GR an isolated theory? How rigid is GR?
Einstein’s GR

A 90 year-long successful theory
a single free parameter and it works great

- Equivalence principle 10^{-12} level
- Solar system tests (weak field) 10^{-4} level
- Binary pulsar (nonlinear) 10^{-3} level

however

- there are some puzzling features at large distances
- CMB + Supernovae data require Dark energy $p = w \rho$, $w < 0$. Expanded acceleration
 Perhaps just a tiny (??) cosmological constant, $w = -1$, $\Lambda \sim (10^{-4} \text{ eV})^4$ or a bizarre fluid?
- Is GR an isolated theory ? How rigid is GR ?
Degrees of Freedom

- **GR**
 \[M_{\text{pl}}^2 E_{\mu\nu}^{(1)} = T_{\mu\nu}^{(1)}, \quad g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \]

 DOF \ 10 - 2 \times 4 = 2 \quad 4 \text{ gauge modes} \quad \delta h_{\mu\nu} = \partial_{\mu} \xi_{\nu} + \partial_{\nu} \xi_{\mu}

- Massive gravitons (Minkowski) have 5 DOF, more DOF needed

- Give up gauge symmetry. Fierz-Pauli theory (1939)

 \[L_{\text{FP}} = M_{\text{pl}}^2 L_{\text{grav}}^{(2)} + M_{\text{pl}}^2 m^2 \left(a h_{\mu\nu} h^{\mu\nu} + b h^2 \right) \]

 \[E_{\mu\nu}^{(1)} - \frac{1}{4} m^2 \left(a h_{\mu\nu} + b h \eta_{\mu\nu} \right) = M_{\text{pl}}^{-2} T_{\mu\nu}^{(1)} \quad \partial^\nu E_{\mu\nu}^{(1)} = 0 \]

 4 constraints \quad DOF \ 10 - 4 = 6 = 5 + 1

- The sixth mode is a ghost (Boulware-Deser).

 Absent in flat space when \(a + b = 0 \) (FP theory)
 present in curved space and at the nonlinear level

- When the ghost is projected out, light bending badly contradicts experiments (van Dam, Veltman, Zakharov) vdBZ discontinuity
Degrees of Freedom

- GR
 \[M_{pl}^2 E_{\mu\nu}^{(1)} = T_{\mu\nu}^{(1)}, \quad g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \]
 DOF \(10 - 2 \times 4 = 2 \)
 4 gauge modes \(\delta h_{\mu\nu} = \partial_\mu \xi_\nu + \partial_\nu \xi_\mu \)

- Massive gravitons (Minkowski) have 5 DOF, more DOF needed

 - Give up gauge symmetry. Fierz-Pauli theory (1939)
 \[L_{FP} = M_{pl}^2 L_{grav}^{(2)} + M_{pl}^2 m^2 \left(a h_{\mu\nu} h_{\mu\nu} + b h^2 \right) \]

 \[E_{\mu\nu}^{(1)} - \frac{1}{4} m^2 \left(a h_{\mu\nu} + b h \eta_{\mu\nu} \right) = M_{pl}^{-2} T_{\mu\nu}^{(1)} \quad \partial^\nu E_{\mu\nu}^{(1)} = 0 \]

 4 constraints
 DOF \(10 - 4 = 6 = 5 + 1 \)

- The sixth mode is a ghost (Boulware-Deser).
 Absent in flat space when \(a + b = 0 \) (FP theory)
 present in curved space and at the nonlinear level

- When the ghost is projected out, light bending badly contradicts experiments (van Dam, Veltman, Zakharov) vDVZ discontinuity
Degrees of Freedom

- **GR**
 \[M_{pl}^2 E^{(1)}_{\mu\nu} = T^{(1)}_{\mu\nu}, \quad g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \]

 DOF \(10 - 2 \times 4 = 2 \)
 4 gauge modes \(\delta h_{\mu\nu} = \partial_\mu \xi_\nu + \partial_\nu \xi_\mu \)

- Massive gravitons (Minkowski) have 5 DOF, more DOF needed

- Give up gauge symmetry. Fierz-Pauli theory (1939)
 \[
 L_{FP} = M_{pl}^2 L_{grav}^{(2)} + M_{pl}^2 m^2 \left(a h_{\mu\nu} h^{\mu\nu} + b h^2 \right) \\
 E^{(1)}_{\mu\nu} - \frac{1}{4} m^2 \left(a h_{\mu\nu} + b h \eta_{\mu\nu} \right) = M_{pl}^{-2} T^{(1)}_{\mu\nu} \quad \partial^{\nu} E^{(1)}_{\mu\nu} = 0
 \]
 4 constraints
 DOF \(10 - 4 = 6 = 5 + 1 \)

- The sixth mode is a ghost (Boulware-Deser).
 Absent in flat space when \(a + b = 0 \) (FP theory)
 present in curved space and at the nonlinear level

- When the ghost is projected out, light bending badly contradicts experiments (van Dam, Veltman, Zakharov) vdVZ discontinuity
Degrees of Freedom

- GR
 \[M_{pl}^2 E_{\mu\nu}^{(1)} = T_{\mu\nu}^{(1)}, \quad g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \]
 DOF \(10 - 2 \times 4 = 2 \)
 - 4 gauge modes \(\delta h_{\mu\nu} = \partial_\mu \xi_\nu + \partial_\nu \xi_\mu \)
- Massive gravitons (Minkowski) have 5 DOF, more DOF needed
- Give up gauge symmetry. Fierz-Pauli theory (1939)
 \[L_{FP} = M_{pl}^2 L_{grav}^{(2)} + M_{pl}^2 m^2 \left(a h_{\mu\nu} h^{\mu\nu} + b h^2 \right) \]
 \[E_{\mu\nu}^{(1)} - \frac{1}{4} m^2 \left(a h_{\mu\nu} + b h \eta_{\mu\nu} \right) = M_{pl}^{-2} T_{\mu\nu}^{(1)} \]
 \[\partial_\nu E_{\mu\nu}^{(1)} = 0 \]
 - 4 constraints
 - DOF \(10 - 4 = 6 = 5 + 1 \)
- The sixth mode is a ghost (Boulware-Deser).
 Absent in flat space when \(a + b = 0 \) (FP theory)
 present in curved space and at the nonlinear level
- When the ghost is projected out, light bending badly contradicts experiments (van Dam, Veltman, Zakharov) "vdVZ discontinuity"
Degrees of Freedom

- **GR**
 \[M_{pl}^2 E^{(1)}_{\mu\nu} = T^{(1)}_{\mu\nu}, \quad g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \]

 DOF \(10 - 2 \times 4 = 2 \)
 4 gauge modes \(\delta h_{\mu\nu} = \partial_\mu \xi_\nu + \partial_\nu \xi_\mu \)

- Massive gravitons (Minkowski) have 5 DOF, more DOF needed

- Give up gauge symmetry. Fierz-Pauli theory (1939)

 \[L_{FP} = M_{pl}^2 L_{grav}^{(2)} + M_{pl}^2 m^2 \left(a h_{\mu\nu} h^{\mu\nu} + b h^2 \right) \]

 \[E^{(1)}_{\mu\nu} - \frac{1}{4} m^2 \left(a h_{\mu\nu} + b h_{\eta_{\mu\nu}} \right) = M_{pl}^{-2} T^{(1)}_{\mu\nu}, \quad \partial^\nu E^{(1)}_{\mu\nu} = 0 \]

 4 constraints
 DOF \(10 - 4 = 6 = 5 + 1 \)

- The sixth mode is a ghost (Boulware-Deser).
 Absent in flat space when \(a + b = 0 \) (FP theory)
 present in curved space and at the nonlinear level

- When the ghost is projected out, light bending badly contradicts experiments (van Dam, Veltman, Zakharov) vdVZ discontinuity
Beyond the Linear Level

Bottom line

Massive gravity around Minkowski background is problematic

- Linear FP theory suffers from vDVZ discontinuity
- Nonlinear effects are dominated by unknown UV physics
- Very low cutoff, solar system scale physics cannot be trusted if \(m \sim H \)

Giving up Minkowski background can help

- At linearized level there is no ghost, no vDVZ discontinuity
 FP tuning not needed
- Also propagation around curved background looks better

Rubakov, Dubowsky, Comelli-Nesti-Pilo
Beyond the Linear Level

Bottom line

Massive gravity around Minkowski background is problematic

- Linear FP theory suffers from vDVZ discontinuity
- Nonlinear effects are dominated by unknown UV physics
- Very low cutoff, solar system scale physics cannot be trusted if $m \sim H$

Giving up Minkowski background can help

- At linearized level there is no ghost, no vDVZ discontinuity
- FP tuning not needed
- Also propagation around curved background looks better

Rubakov, Dubowsky, Comelli-Nesti-Pilo
Beyond the Linear Level

Bottom line

Massive gravity around Minkowski background is problematic

- Linear FP theory suffers from vDVZ discontinuity
- Nonlinear effects are dominated by unknown UV physics
- Very low cutoff, solar system scale physics cannot be trusted if $m \sim H$

Giving up Minkowski background can help

- At linearized level there is no ghost, no vDVZ discontinuity
- FP tuning not needed
- Also propagation around curved background looks better

Rubakov, Dubowsky, Comelli-Nesti-Pilo
Beyond the Linear Level

Massive gravity around Minkowski background is problematic

- Linear FP theory suffers from vDVZ discontinuity
- Nonlinear effects are dominated by unknown UV physics
- Very low cutoff, solar system scale physics cannot be trusted if $m \sim H$

Giving up Minkowski background can help

- At linearized level there is no ghost, no vDVZ discontinuity
- FP tuning not needed
- Also propagation around curved background looks better

Rubakov, Dubowsky, Comelli-Nesti-Pilo
Beyond the Linear Level

Bottom line

Massive gravity around Minkowski background is problematic

- Linear FP theory suffers from vDVZ discontinuity
- Nonlinear effects are dominated by unknown UV physics
- Very low cutoff, solar system scale physics cannot be trusted if $m \sim H$

Giving up Minkowski background can help

- At linearized level there is no ghost, no vDVZ discontinuity
 FP tuning not needed
- Also propagation around curved background looks better

Rubakov, Dubowsky, Comelli-Nesti-Pilo
Beyond the Linear Level

Bottom line

Massive gravity around Minkowski background is problematic

- Linear FP theory suffers from vDVZ discontinuity
- Nonlinear effects are dominated by unknown UV physics
- Very low cutoff, solar system scale physics cannot be trusted if \(m \sim H \)

Giving up Minkowski background can help

- At linearized level there is no ghost, no vDVZ discontinuity
 FP tuning not needed
- Also propagation around curved background looks better

Rubakov, Dubowsky, Comelli-Nesti-Pilo
Beyond the Linear Level

Bottom line

Massive gravity around Minkowski background is problematic

- Linear FP theory suffers from vDVZ discontinuity
- Nonlinear effects are dominated by unknown UV physics
- Very low cutoff, solar system scale physics cannot be trusted if $m \sim H$

Giving up Minkowski background can help

- At linearized level there is no ghost, no vDVZ discontinuity
 FP tuning not needed
- Also propagation around curved background looks better

Rubakov, Dubowsky, Comelli-Nesti-Pilo
Beyond the Linear Level

Bottom line

Massive gravity around Minkowski background is problematic

- Linear FP theory suffers from vDVZ discontinuity
- Nonlinear effects are dominated by unknown UV physics
- Very low cutoff, solar system scale physics cannot be trusted if $m \sim H$

Giving up Minkowski background can help

- At linearized level there is no ghost, no vDVZ discontinuity
 FP tuning not needed
- Also propagation around curved background looks better

Rubakov, Dubowsky, Comelli-Nesti-Pilo
Step 1: Recasting the mass term

- $g^{\mu \nu} = \eta^{\mu \nu} - h^{\mu \nu} + h^{\mu \alpha} h^{\nu}_{\alpha} + \cdots \Rightarrow g^{\mu \nu} \eta_{\mu \nu}$ represents a mass term
- To recover diff (gauge) invariance replace $\eta_{\mu \nu}$ by a dynamical (Stuckelberg) extra metric field $\tilde{q}_{\mu \nu}$
 $\eta_{\mu \nu} \rightarrow q_{\mu \nu}$
- New tensor from the two metric $X^\mu_{\nu} = g^{\mu \alpha} q_{\alpha \nu}$
- Typical mass terms are made out $\tau_n = \text{Tr}(X^n)$
 $a (\tau_1 - 4)^2 + b (\tau_2 - 2\tau_1 + 4) = (a h_{\mu \nu} h^{\mu \nu} + b h^2) + \cdots$
The Stuckelberg Trick in Massive GR: Bigravity I

Step 1: Recasting the mass term

- $g_{\mu\nu} = \eta_{\mu\nu} - h_{\mu\nu} + h_{\mu\alpha} h_{\nu}^{\alpha} + \cdots \Rightarrow g_{\mu\nu} \eta_{\mu\nu}$
 represents a mass term

- To recover diff (gauge) invariance replace $\eta_{\mu\nu}$ by a dynamical (Stuckelberg) extra metric field $\tilde{q}_{\mu\nu}$
 $\eta_{\mu\nu} \rightarrow q_{\mu\nu}$

- New tensor from the two metric $X_{\nu}^{\mu} = g_{\mu\alpha} q_{\alpha\nu}$

- Typical mass terms are made out $\tau_n = \text{Tr}(X^n)$
 $a(\tau_1 - 4)^2 + b(\tau_2 - 2\tau_1 + 4) = (a h_{\mu\nu} h^{\mu\nu} + b h^2) + \cdots$
Step 1: Recasting the mass term

- \(g^{\mu\nu} = \eta^{\mu\nu} - h^{\mu\nu} + h^{\mu\alpha} h_{\alpha}^{\nu} + \cdots \Rightarrow g^{\mu\nu} \eta_{\mu\nu} \)

represents a mass term.

- To recover diff (gauge) invariance replace \(\eta_{\mu\nu} \) by a dynamical (Stuckelberg) extra metric field \(\tilde{q}_{\mu\nu} \)

\(\eta_{\mu\nu} \rightarrow q_{\mu\nu} \)

- New tensor from the two metric \(X_{\nu}^{\mu} = g^{\mu\alpha} q_{\alpha\nu} \)

- Typical mass terms are made out \(\tau_n = \text{Tr}(X^n) \)

\[
a (\tau_1 - 4)^2 + b (\tau_2 - 2\tau_1 + 4) = (a h_{\mu\nu} h^{\mu\nu} + b h^2) + \cdots
\]
The Stuckelberg Trick in Massive GR: Bigravity I

Step 1: Recasting the mass term

- \(g^{\mu \nu} = \eta^{\mu \nu} - h^{\mu \nu} + h^{\mu \alpha} h^\nu_\alpha + \cdots \Rightarrow g^{\mu \nu} \eta_{\mu \nu} \)
 - represents a mass term

- To recover diff (gauge) invariance replace \(\eta_{\mu \nu} \) by a dynamical (Stuckelberg) extra metric field \(\tilde{q}_{\mu \nu} \)
 - \(\eta_{\mu \nu} \rightarrow q_{\mu \nu} \)

- New tensor from the two metric \(X^\mu_\nu = g^{\mu \alpha} q_{\alpha \nu} \)

- Typical mass terms are made out \(\tau_n = \text{Tr}(X^n) \)
 - \(a (\tau_1 - 4)^2 + b (\tau_2 - 2\tau_1 + 4) = (a h_{\mu \nu} h^{\mu \nu} + b h^2) + \cdots \)
Step 1: Recasting the mass term

- $g^{\mu \nu} = \eta^{\mu \nu} - h^{\mu \nu} + h^{\mu \alpha} h^{\nu}_{\alpha} + \cdots \Rightarrow g^{\mu \nu} \eta_{\mu \nu}$ represents a mass term
- To recover diff (gauge) invariance replace $\eta_{\mu \nu}$ by a dynamical (Stuckelberg) extra metric field $\tilde{q}_{\mu \nu}$

 $\eta_{\mu \nu} \rightarrow q_{\mu \nu}$

- New tensor from the two metric $X^\mu_\nu = g^{\mu \alpha} q_{\alpha \nu}$

- Typical mass terms are made out $\tau_n = \text{Tr}(X^n)$

 $a (\tau_1 - 4)^2 + b (\tau_2 - 2\tau_1 + 4) = (a h_{\mu \nu} h^{\mu \nu} + b h^2) + \cdots$
Step 2: Stuckelberg Dynamics

- The extra metrics is turned into a dynamical field

\[S_{MGR} = \int d^4 x \left[\sqrt{g} M_{pl}^2 R(g) + \kappa M_{pl}^2 \sqrt{\tilde{g}} R(\tilde{g}) - 4(\tilde{g}g)^{1/4} V(X) \right] \]

- Matter couples only to \(g_{\mu\nu} \)
- Gauge symmetry: Diff
- When \(\kappa \to \infty \), \(\tilde{g}_{\mu\nu} \) gets non-dynamical and flat: \(\tilde{g}_{\mu\nu} = e^a_\mu e^b_\nu \tilde{\eta}_{ab} \)
 \[e^a = d\phi^a \text{ and } \tilde{g}_{\mu\nu} = \partial_\mu \phi^a \partial_\nu \phi^b \tilde{\eta}_{ab} \]
- When \(\kappa \to \infty \) the stuckelberg fields are \(\phi^a \)
Step 2: Stuckelberg Dynamics

The extra metrics is turned into a dynamical field

\[S_{MGR} = \int d^4x \left[\sqrt{g} M_{pl}^2 R(g) + \kappa M_{pl}^2 \sqrt{\tilde{g}} R(\tilde{g}) - 4(\tilde{g} g)^{1/4} V(X) \right] \]

- Matter couples only to \(g_{\mu\nu} \)
- Gauge symmetry: Diff
- When \(\kappa \to \infty \), \(\tilde{g}_{\mu\nu} \) gets non-dynamical and flat: \(\tilde{g}_{\mu\nu} = e^a_\mu e^b_\nu \tilde{\eta}_{ab} \)
 \(e^a = d\phi^a \) and \(\tilde{g}_{\mu\nu} = \partial_\mu \phi^a \partial_\nu \phi^b \tilde{\eta}_{ab} \)
- When \(\kappa \to \infty \) the stuckelberg fields are \(\phi^a \)
Step 2: Stuckelberg Dynamics

The extra metrics is turned into a dynamical field

\[S_{MGR} = \int d^4 x \left[\sqrt{g} M_p^2 R(g) + \kappa M_p^2 \sqrt{\bar{g}} R(\bar{g}) - 4(\bar{g}g)^{1/4} V(X) \right] \]

- Matter couples only to \(g_{\mu\nu} \)
- Gauge symmetry: Diff
- When \(\kappa \to \infty \), \(\bar{g}_{\mu\nu} \) gets non-dynamical and flat: \(\bar{g}_{\mu\nu} = e^a_\mu e^b_\nu \bar{\eta}_{ab} \)
 \(e^a = d\phi^a \) and \(\bar{g}_{\mu\nu} = \partial_\mu \phi^a \partial_\nu \phi^b \bar{\eta}_{ab} \)
- When \(\kappa \to \infty \) the stuckelberg fields are \(\phi^a \)
Step 2: Stuckelberg Dynamics

The extra metrics is turned into a dynamical field

\[S_{MGR} = \int d^4 x \left[\sqrt{g} \, M_{pl}^2 \, R(g) + \kappa \, M_{pl}^2 \, \sqrt{\tilde{g}} \, R(\tilde{g}) - 4(\tilde{g} g)^{1/4} \, V(X) \right] \]

- Matter couples only to \(g_{\mu\nu} \)
- Gauge symmetry: Diff
 - When \(\kappa \to \infty \), \(\tilde{g}_{\mu\nu} \) gets non-dynamical and flat: \(\tilde{g}_{\mu\nu} = e^a_{\mu} \, e^b_{\nu} \tilde{\eta}_{ab} \)

 where \(e^a = d\phi^a \) and \(\tilde{g}_{\mu\nu} = \partial_\mu \phi^a \partial_\nu \phi^b \tilde{\eta}_{ab} \)
 - When \(\kappa \to \infty \) the stuckelberg fields are \(\phi^a \)
Step 2: Stuckelberg Dynamics

- The extra metrics is turned into a dynamical field

\[S_{MGR} = \int d^4 x \left[\sqrt{g} M_{pl}^2 R(g) + \kappa M_{pl}^2 \sqrt{\tilde{g}} R(\tilde{g}) - 4(\tilde{g} g)^{1/4} V(X) \right] \]

- Matter couples only to \(g_{\mu \nu} \)
- Gauge symmetry: Diff

When \(\kappa \to \infty \), \(\tilde{g}_{\mu \nu} \) gets non-dynamical and flat:
\[\tilde{g}_{\mu \nu} = e^a_{\mu} e^b_{\nu} \tilde{\eta}_{ab} \]
\[e^a = d \phi^a \text{ and } \tilde{g}_{\mu \nu} = \partial_{\mu} \phi^a \partial_{\nu} \phi^b \tilde{\eta}_{ab} \]

- When \(\kappa \to \infty \) the stuckelberg fields are \(\phi^a \)
Step 2: Stuckelberg Dynamics

- The extra metrics is turned into a dynamical field

\[S_{MGR} = \int d^4 x \left[\sqrt{g} M_{pl}^2 R(g) + \kappa M_{pl}^2 \sqrt{\tilde{g}} R(\tilde{g}) - 4(\tilde{g}g)^{1/4} V(X) \right] \]

- Matter couples only to \(g_{\mu\nu} \)
- Gauge symmetry: Diff

- When \(\kappa \to \infty \), \(\tilde{g}_{\mu\nu} \) gets non-dynamical and flat:
 \[\tilde{g}_{\mu\nu} = e^{a}_{\mu} e^{b}_{\nu} \tilde{\eta}_{ab} \]
 \[e^{a} = d\phi^{a} \] and
 \[\tilde{g}_{\mu\nu} = \partial_{\mu} \phi^{a} \partial_{\nu} \phi^{b} \tilde{\eta}_{ab} \]

- When \(\kappa \to \infty \) the stuckelberg fields are \(\phi^{a} \)
In the bigravity unitary gauge and $\kappa \to \infty$, the Stuckelberg fields are ϕ^a

- Powerful formalism to treat in unified way both the Lorentz preserving and Lorentz breaking cases
- $X_{|bkg} = \text{Diag}(1, 1, 1, 1)$ Lorentz preserving (LI) background
 - $X_{|bkg} = \text{Diag}(a, b, b, b)$ Lorentz breaking (LB) background
 - only rotational symmetry is present
- For any V the LI background is always present

Modified Einstein equations (Bigravity Unitary gauge)

\[
M_{pl}^2 E^\mu_\nu + [\text{Det}(X)]^{1/4} \left[V \delta^\mu_\nu - 4(V'X)^\mu_\nu \right] = T^\mu_\nu
\]

\[
\kappa M_{pl}^2 \tilde{E}^\mu_\nu + [\text{Det}(X)]^{-1/4} \left[V \delta^\mu_\nu + 4(V'X)^\mu_\nu \right] = 0
\]
In the bigravity unitary gauge and $\kappa \to \infty$, the stuckelberg fields are ϕ^a

Powerful formalism to treat in unified way both the Lorentz preserving and Lorentz breaking cases

$X_{\text{bkg}} = \text{Diag}(1, 1, 1, 1)$ Lorentz preserving (LI) background

$X_{\text{bkg}} = \text{Diag}(a, b, b, b)$ Lorentz breaking (LB) background

only rotational symmetry is present

For any V the LI background is always present

Modified Einstein equations (Bigravity Unitary gauge)

$$M_{pl}^2 \, E_{\nu}^\mu + [\text{Det}(X)]^{1/4} \left[V \, \delta_{\nu}^\mu - 4 (V' X)^{\mu}_{\nu} \right] = T_{\nu}^\mu$$

$$\kappa \, M_{pl}^2 \, \tilde{E}_{\nu}^\mu + [\text{Det}(X)]^{-1/4} \left[V \, \delta_{\nu}^\mu + 4 (V' X)^{\mu}_{\nu} \right] = 0$$
In the bigravity unitary gauge and $\kappa \to \infty$, the stuckelberg fields are ϕ^a

Powerful formalism to treat in unified way both the Lorentz preserving and Lorentz breaking cases

$X|_{bkg} = \text{Diag}(1, 1, 1, 1)$ Lorentz preserving (LI) background

$X|_{bkg} = \text{Diag}(a, b, b, b)$ Lorentz breaking (LB) background

only rotational symmetry is present

For any V the LI background is always present

Modified Einstein equations (Bigravity Unitary gauge)

$$M_{pl}^2 E^\mu_\nu + [\text{Det}(X)]^{1/4} \left[V \delta^\mu_\nu - 4(V'X)^\mu_\nu \right] = T^\mu_\nu$$

$$\kappa M_{pl}^2 \tilde{E}^\mu_\nu + [\text{Det}(X)]^{-1/4} \left[V \delta^\mu_\nu + 4(V'X)^\mu_\nu \right] = 0$$
The Stuckelberg Trick in Massive GR: Bigravity III

- In the bigravity unitary gauge and $\kappa \to \infty$, the stuckelberg fields are ϕ^a

- Powerful formalism to treat in unified way both the Lorentz preserving and Lorentz breaking cases

$X_{|bkg} = \text{Diag}(1, 1, 1, 1)$ Lorentz preserving (LI) background

$X_{|bkg} = \text{Diag}(a, b, b, b)$ Lorentz breaking (LB) background

- Only rotational symmetry is present

- For any V the LI background is always present

- Modified Einstein equations (Bigravity Unitary gauge)

$$M_{pl}^2 E^\mu_\nu + [\text{Det}(X)]^{1/4} \left[V \delta^\mu_\nu - 4 (V' X)^\mu_\nu \right] = T^\mu_\nu$$

$$\kappa M_{pl}^2 \tilde{E}^\mu_\nu + [\text{Det}(X)]^{-1/4} \left[V \delta^\mu_\nu + 4 (V' X)^\mu_\nu \right] = 0$$
Exact Solutions, why?

- In massive gravity perturbation theory can be tricky
- Check in a non-perturbative way the presence/absence of vDVZ discontinuity
- The spherically symmetric case in GR is the perfect benchmark
Exact Solutions, why?

- In massive gravity perturbation theory can be tricky
- Check in a non-perturbative way the presence/absence of vDVZ discontinuity
- The spherically symmetric case in GR is the perfect benchmark
Modifying Schwarzschild I

- Spherically symmetric ansatz

\[ds^2 = -J(r) \, dt^2 + K(r) \, dr^2 + r^2 \, d\Omega^2 \]

\[\tilde{d}s^2 = -C(r) \, dt^2 + A(r) \, dr^2 + 2D(r) \, dt \, dr + B(r) \, d\Omega^2 \]

- Einstein equations

\[\frac{M^2_{pl}}{\kappa} E^\mu_\nu + \left[\text{Det}(X) \right]^{1/4} \left[V \, \delta^\mu_\nu - 4 \left(V' X \right)^\mu_\nu \right] = 0 \]

\[\kappa \frac{M^2_{pl}}{\kappa} \tilde{E}^\mu_\nu + \left[\text{Det}(X) \right]^{-1/4} \left[V \, \delta^\mu_\nu + 4 \left(V' X \right)^\mu_\nu \right] = 0 \]

Finding all solutions if very hard. Consider solutions with \(D \neq 0 \):

Potential independent analysis: \(g_{\mu\nu} \) is diagonal \(\Rightarrow \) \(E^\mu_\nu \) diagonal

\(\Rightarrow \left(V' X \right)^\mu_\nu \) diagonal \(\Rightarrow \tilde{E}^\mu_\nu \) diagonal \(\Rightarrow \tilde{E}^1_2 = \tilde{E}^2_2 \Rightarrow K = J^{-1} \)

- First result potential independent: \(\psi = \phi \), leading PN physics same as in GR. Solar system tests are OK!
Modifying Schwarzschild I

- Spherically symmetric ansatz

\[ds^2 = -J(r) \, dt^2 + K(r) \, dr^2 + r^2 \, d\Omega^2 \]

\[\tilde{d}s^2 = -C(r) \, dt^2 + A(r) \, dr^2 + 2D(r) \, dt \, dr + B(r) \, d\Omega^2 \]

- Einstein equations

\[M_{\text{pl}}^2 \, E_{\nu}^\mu + \left[\text{Det}(X) \right]^{1/4} \left[V \, \delta_{\nu}^\mu - 4(V'X)_{\nu}^\mu \right] = 0 \]

\[\kappa \, M_{\text{pl}}^2 \, \tilde{E}_{\nu}^\mu + \left[\text{Det}(X) \right]^{-1/4} \left[V \, \delta_{\nu}^\mu + 4(V'X)_{\nu}^\mu \right] = 0 \]

Finding all solutions if very hard. Consider solutions with \(D \neq 0 \)

Potential independent analysis: \(g_{\mu\nu} \) is diagonal \(\Rightarrow E_{\nu}^\mu \) diagonal

\(\Rightarrow (V'X)_{\nu}^\mu \) diagonal \(\Rightarrow \tilde{E}_{\nu}^\mu \) diagonal \(\Rightarrow \tilde{E}_1^1 = \tilde{E}_2^2 \Rightarrow K = J^{-1} \)

First result potential independent: \(\psi = \phi \), leading PN physics same as in GR. Solar system tests are OK!
Modifying Schwarzschild I

- Spherically symmetric ansatz

\[ds^2 = -J(r) \, dt^2 + K(r) \, dr^2 + r^2 \, d\Omega^2 \]

\[\tilde{ds}^2 = -C(r) \, dt^2 + A(r) \, dr^2 + 2D(r) \, dt \, dr + B(r) \, d\Omega^2 \]

- Einstein equations

\[M_{pl}^2 \, E_{\nu}^{\mu} + [\text{Det}(X)]^{1/4} \left[V \, \delta_{\nu}^{\mu} - 4(V'X)_{\nu}^{\mu} \right] = 0 \]

\[\kappa \, M_{pl}^2 \, \tilde{E}_{\nu}^{\mu} + [\text{Det}(X)]^{-1/4} \left[V \, \delta_{\nu}^{\mu} + 4(V'X)_{\nu}^{\mu} \right] = 0 \]

Finding all solutions if very hard. Consider solutions with \(D \neq 0 \)

Potential independent analysis: \(g_{\mu\nu} \) is diagonal \(\Rightarrow \) \(E_{\nu}^{\mu} \) diagonal

\(\Rightarrow \) \((V'X)_{\nu}^{\mu} \) diagonal \(\Rightarrow \) \(\tilde{E}_{\nu}^{\mu} \) diagonal \(\Rightarrow \) \(\tilde{E}_1 = \tilde{E}_2 \) \(\Rightarrow \) \(K = J^{-1} \)

- First result potential independent: \(\psi = \phi \), leading PN physics same as in GR. Solar system tests are OK!
Solution

\[J = \left(1 - \frac{2Gm_1}{r} \right) + 2GSr^\gamma, \quad KJ = 1 \]

\[C = c^2\omega^2 \left(1 - \frac{2Gm_2}{\kappa r} \right) - \frac{2G}{c\omega^2\kappa}Sr^\gamma, \quad D^2 + AC = c^2\omega^4 \]

\[B = \omega^2r^2, \quad A = \ldots \]

- Integration constants: \(m_1, m_2 \) and \(S \). Determined by the parameters in \(V: c, \omega \)
- When \(\gamma < 2 \), for \(r \to \infty \)
 \[g \to \text{diag}(-1, 1, 1, 1) \text{ and } g \to \omega^2 \text{diag}(-c^2, 1, 1, 1) \]
 Lorentz Breaking asymptotics for \(c \neq 1 \)
- When \(S \neq 0 \) nontrivial modification but still flat at infinity when \(\gamma < 2 \). When \(-1 < \gamma < 2\) the large \(r \) behaviour is modified!
- In general the solution can by AdS or dS at infinity (\(\gamma < 2 \)) not shown . . .
Solution

\[J = \left(1 - \frac{2Gm_1}{r}\right) + 2GSr^\gamma, \quad KJ = 1 \]
\[C = c^2\omega^2\left(1 - \frac{2Gm_2}{\kappa r}\right) - \frac{2G}{c\omega^2\kappa}Sr^\gamma, \quad D^2 + AC = c^2\omega^4 \]
\[B = \omega^2r^2, \quad A = \ldots \]

Integration constants: \(m_1, m_2 \) and \(S \). Determined by the parameters in \(V: c, \omega \)

- When \(\gamma < 2 \), for \(r \to \infty \)
 \[g \to \text{diag}(-1, 1, 1, 1) \text{ and } g \to \omega^2\text{diag}(-c^2, 1, 1, 1) \]
 Lorentz Breaking asymptotics for \(c \neq 1 \)

- When \(S \neq 0 \) nontrivial modification but still flat at infinity when \(\gamma < 2 \). When \(-1 < \gamma < 2\) the large \(r \) behaviour is modified!

- In general the solution can by AdS or dS at infinity (\(\gamma < 2 \)) not shown …
Solution

\[J = \left(1 - \frac{2Gm_1}{r} \right) + 2GSr^\gamma, \quad KJ = 1 \]

\[C = c^2\omega^2 \left(1 - \frac{2Gm_2}{\kappa r} \right) - \frac{2G}{c\omega^2\kappa} Sr^\gamma, \quad D^2 + AC = c^2\omega^4 \]

\[B = \omega^2 r^2, \quad A = \ldots \]

- Integration constants: \(m_1, m_2 \) and \(S \). Determined by the parameters in \(V: c, \omega \)
- When \(\gamma < 2 \), for \(r \to \infty \)
 - \(g \to \text{diag}(-1, 1, 1, 1) \) and \(g \to \omega^2 \text{diag}(-c^2, 1, 1, 1) \)
 - Lorentz Breaking asymptotics for \(c \neq 1 \)
- When \(S \neq 0 \) nontrivial modification but still flat at infinity when \(\gamma < 2 \).
 - When \(-1 < \gamma < 2 \) the large \(r \) behaviour is modified!
- In general the solution can by AdS or dS at infinity \((\gamma < 2) \) not shown...
Solution

\[J = \left(1 - \frac{2Gm_1}{r} \right) + 2GSr^\gamma, \quad KJ = 1 \]

\[C = c^2\omega^2\left(1 - \frac{2Gm_2}{\kappa r} \right) - \frac{2G}{c\omega^2\kappa}Sr^\gamma, \quad D^2 + AC = c^2\omega^4 \]

\[B = \omega^2r^2, \quad A = \ldots \]

Integration constants: \(m_1, m_2 \) and \(S \). Determined by the parameters in \(V: c, \omega \)

When \(\gamma < 2 \), for \(r \to \infty \)
\[g \to \text{diag}(-1, 1, 1, 1) \text{ and } g \to \omega^2 \text{diag}(-c^2, 1, 1, 1) \]

Lorentz Breaking asymptotics for \(c \neq 1 \)

When \(S \neq 0 \) nontrivial modification but still flat at infinity when \(\gamma < 2 \). When \(-1 < \gamma < 2 \) the large \(r \) behaviour is modified!

In general the solution can be AdS or dS at infinity (\(\gamma < 2 \)) not shown...
Solution

\[J = \left(1 - \frac{2Gm_1}{r} \right) + 2G S r^\gamma, \quad KJ = 1 \]

\[C = c^2 \omega^2 \left(1 - \frac{2Gm_2}{\kappa r} \right) - \frac{2G}{c\omega^2\kappa} S r^\gamma, \quad D^2 + AC = c^2 \omega^4 \]

\[B = \omega^2 r^2, \quad A = \ldots \]

- Integration constants: \(m_1, m_2 \) and \(S \). Determined by the parameters in \(V: c, \omega \)
- When \(\gamma < 2 \), for \(r \to \infty \)

 \[g \to \text{diag}(-1, 1, 1, 1) \text{ and } g \to \omega^2 \text{diag}(-c^2, 1, 1, 1) \]

Lorentz Breaking asymptotics for \(c \neq 1 \)

- When \(S \neq 0 \) nontrivial modification but still flat at infinity when \(\gamma < 2 \). When \(-1 < \gamma < 2 \) the large \(r \) behaviour is modified!
- In general the solution can by AdS or dS at infinity (\(\gamma < 2 \)) not shown
To be physical the solution must have finite total energy

Energy in GR is tricky

- Equivalence principle forbids localization of gravitational energy
- Hypothetical EMT of gravity: $T_{GR}(x_0) \sim \mathcal{F}(\partial g)|_{x_0}$. But at each x_0
 $g(x_0) \equiv \eta$ and $\partial g(x_0) = 0 \Rightarrow T_{GR}(x_0) = 0$
- Energy cannot be taken apart but must be considered as whole
- Locally there is no gravity!
- Energy in GR is the conserved charge associated with an arbitrary translation in time, diff generated by a timelike vector
- Equivalently, given a solution, its ADM energy is the value of the Hamiltonian
- Needed: a splitting of spacetime in space + time
Total Energy

To be physical the solution must have finite total energy

Energy in GR is tricky

- Equivalence principle forbids localization of gravitational energy
 Hypothetical EMT of gravity: \(T_{\text{GR}}(x_0) \sim F(\partial g)_{|x_0} \). But at each \(x_0 \) \(g(x_0) \equiv \eta \) and \(\partial g(x_0) = 0 \) \(\Rightarrow T_{\text{GR}}(x_0) = 0 \)

- Energy cannot be taken apart but must be considered as whole
 Locally there is no gravity!

- Energy in GR is the conserved charge associated with an arbitrary translation in time, diff generated by a timelike vector

- Equivalently, given a solution, its ADM energy is the value of the Hamiltonian

Needed: a splitting of spacetime in space + time
To be physical the solution must have finite total energy
Energy in GR is tricky

- Equivalence principle forbids localization of gravitational energy
- Hypothetical EMT of gravity: $T_{GR}(x_0) \sim \mathcal{F}(\partial g)|_{x_0}$. But at each x_0 $g(x_0) \equiv \eta$ and $\partial g(x_0) = 0 \Rightarrow T_{GR}(x_0) = 0$
- Energy cannot be taken apart but must be considered as whole
 Locally there is no gravity!

- Energy in GR is the conserved charge associated with an arbitrary translation in time, diff generated by a timelike vector
- Equivalently, given a solution, its ADM energy is the value of the Hamiltonian
 Needed: a splitting of spacetime in space + time
To be physical the solution must have finite total energy
Energy in GR is tricky

- Equivalence principle forbids localization of gravitational energy
 Hypothetical EMT of gravity: \(T_{\text{GR}}(x_0) \sim \mathcal{F}(\partial g)|_{x_0} \). But at each \(x_0 \)
 \(g(x_0) \equiv \eta \) and \(\partial g(x_0) = 0 \Rightarrow T_{\text{GR}}(x_0) = 0 \)
- Energy cannot be taken apart but must be considered as whole
 Locally there is no gravity!
- Energy in GR is the conserved charge associated with an arbitrary
 translation in time, diff generated by a timelike vector
- Equivalently, given a solution, its ADM energy is the value of the Hamiltonian
 Needed: a splitting of spacetime in space + time
Equivalence principle forbids localization of gravitational energy
Hypothetical EMT of gravity: $T_{GR}(x_0) \sim \mathcal{F}(\partial g)|_{x_0}$. But at each x_0 $g(x_0) \equiv \eta$ and $\partial g(x_0) = 0 \Rightarrow T_{GR}(x_0) = 0$

Energy cannot be taken apart but must be considered as whole
Locally there is no gravity!

Energy in GR is the conserved charge associated with an arbitrary translation in time, diff generated by a timelike vector

Equivalently, given a solution, its ADM energy is the value of the Hamiltonian

Needed: a splitting of spacetime in space + time
Energy as a Noether Charge

- Consider the Noether charge associated to timelike translations:
 \[x^\mu \rightarrow x^\mu + \xi^\mu, \text{ with } \xi^2 < 0 \]

- Choose a set boundary condition for dynamical variables, adjust boundary terms in the action so that the charge is a scalar (coordinate independent). NB a reference metric is needed. We use flat space.

- Fixing the induced metric on the 2-surface \(t = \text{const}, \ r = \bar{r} \) with \(\bar{r} \) large, we get the Nester expression for the energy:

\[
E = \frac{1}{32\pi G} \int_{S_t} d^2 z \epsilon_{\rho\sigma\mu\nu} \left(\xi^\tau \Pi^{\beta\lambda} \Delta \Gamma^\alpha_{\beta\gamma} \delta^{\mu\nu\gamma}_{\alpha\lambda\tau} + \tilde{\nabla}_{\beta} \xi^\alpha \Delta \Pi^{\beta\lambda} \delta^{\mu\nu}_{\alpha\lambda} \right) \frac{\partial x^\rho}{dz^1} \frac{\partial x^\sigma}{dz^2},
\]

- For Schwarzschild, \(E = M \), even in Painleve coordinates. Actually does not depend on coordinates! Ideal tool for us.
Energy as a Noether Charge

- Consider the Noether charge associated to timelike translations: $x^\mu \rightarrow x^\mu + \xi^\mu$, with $\xi^2 < 0$

- Choose a set boundary condition for dynamical variables, adjust boundary terms in the action so that the charge is a scalar (coordinate independent). NB a reference metric is needed. We use flat space.

- Fixing the induced metric on the the 2-surface $t = \text{const}, \: r = \bar{r}$ with \bar{r} large, we get the Nester expression for the energy

$$E = \frac{1}{32\pi G} \int_{S_t} d^2z \epsilon_{\rho\sigma\mu\nu} \left(\xi^\tau \Pi^{\beta\lambda} \Delta \Gamma^{\alpha}_{\beta\gamma} \delta^{\mu\nu\gamma} + \nabla_{\beta} \xi^{\alpha} \Delta \Pi^{\beta\lambda} \delta^{\mu\nu}_{\alpha\lambda} \right) \frac{\partial x^\rho}{dz^1} \frac{\partial x^\sigma}{dz^2},$$

- For Schwarzschild, $E = M$, even in Painleve coordinates. Actually does not depend on coordinates! Ideal tool for us.
Energy as a Noether Charge

- Consider the Noether charge associated to timelike translations: \(x^\mu \to x^\mu + \xi^\mu \), with \(\xi^2 < 0 \)

- Choose a set boundary condition for dynamical variables, adjust boundary terms in the action so that the charge is a scalar (coordinate independent). NB a reference metric is needed. We use flat space.

- Fixing the induced metric on the the 2-surface \(t = \text{const}, \ r = \bar{r} \) with \(\bar{r} \) large, we get the Nester expression for the energy

\[
E = \frac{1}{32\pi G} \int_{S_t} d^2 z \, \epsilon_{\rho\sigma}^{\mu\nu} \\
\left(\xi^{\tau} \Pi^{\beta\lambda} \Delta \Gamma^\alpha_{\beta\gamma} \delta^{\mu\nu\gamma}_{\alpha\lambda\tau} + \tilde{\nabla}_{\beta} \xi^{\alpha} \Delta \Pi^{\beta\lambda} \delta^{\mu\nu}_{\alpha\lambda} \right) \frac{\partial x^\rho}{dz^1} \frac{\partial x^\sigma}{dz^2},
\]

- For Schwarzschild, \(E = M \), even in Painleve coordinates. Actually does not depend on coordinates! Ideal tool for us.
Energy as a Noether Charge

Consider the Noether charge associated to timelike translations:
\[x^\mu \rightarrow x^\mu + \xi^\mu, \text{ with } \xi^2 < 0 \]

Choose a set boundary condition for dynamical variables, adjust boundary terms in the action so that the charge is a scalar (coordinate independent). NB a reference metric is needed. We use flat space.

Fixing the induced metric on the the 2-surface \(t = \text{const}, r = \bar{r} \) with \(\bar{r} \) large, we get the Nester expression for the energy:

\[
E = \frac{1}{32\pi G} \int_{S_t} d^2 z \epsilon_{\rho\sigma\mu\nu} \left(\xi^\tau \nabla^\beta \nabla^\gamma \nabla^\alpha \nabla^\beta \nabla^\gamma \right) \nabla^\rho \nabla^\sigma \frac{\partial x^\rho}{dz^1} \frac{\partial x^\sigma}{dz^2},
\]

For Schwarzschild, \(E = M \), even in Painleve coordinates. Actually does not depend on coordinates! Ideal tool for us.
Computation of the energy

- Boundary terms come only from the kinetic parts; the potential has no role here.
- Contribution of $R(g)$: $E = M - S \bar{r}^{\gamma+1}$
- Contribution of $R(\tilde{g})$: $\tilde{E} = \tilde{M} c^2 + S \bar{r}^{\gamma+1}$.
- Total energy, finite even when $\bar{r} \to \infty$:
 \[E_{\text{tot}} = E + \tilde{E} = M + \tilde{M} c^2 \]

- Beware! Consider a the frozen \tilde{g} theory, equivalent to $\kappa \to \infty$. The solution for g is similar, but there is no \tilde{E} contribution. Energy is infinite!

- No decoupling effects of “heavy modes” of \tilde{g}, needed to account for all energy budget.

- Effective field theories are tricky in gravity when energy is concerned, heavy modes warp spacetime and sometime cannot be neglected.
Computation of the energy

- Boundary terms come only from the kinetic parts; the potential has no role here.

- Contribution of \(R(g) \) \[E = M - S \bar{r}^{-\gamma+1} \]

- Contribution of \(R(\tilde{g}) \) \[\tilde{E} = \tilde{M} c^2 + S \bar{r}^{-\gamma+1} \]

- Total energy, finite even when \(\bar{r} \to \infty \):
 \[E_{\text{tot}} = E + \tilde{E} = M + \tilde{M} c^2 \]

- Beware! Consider the frozen \(\tilde{g} \) theory, equivalent to \(\kappa \to \infty \).
 The solution for \(g \) is similar, but there is no \(\tilde{E} \) contribution. Energy is infinite!

- No decoupling effects of “heavy modes” of \(\tilde{g} \), needed to account for all energy budget.

- Effective field theories are tricky in gravity when energy is concerned; heavy modes warp spacetime and cannot be neglected.
Computation of the energy

- Boundary terms come only from the kinetic parts; the potential has no role here.
- Contribution of $R(g)$: $E = M - S \bar{r}^{\gamma+1}$
- Contribution of $R(\tilde{g})$: $\tilde{E} = \tilde{M} c^2 + S \bar{r}^{\gamma+1}$.
- Total energy, finite even when $\bar{r} \to \infty$!

$$E_{tot} = E + \tilde{E} = M + \tilde{M} c^2$$

- Beware! Consider a the frozen \tilde{g} theory, equivalent to $\kappa \rightarrow \infty$. The solution for g is similar, but there is no \tilde{E} contribution. Energy is infinite!
- No decoupling effects of “heavy modes” of \tilde{g}, needed to account for all energy budget.
- Effective field theories are tricky in gravity when energy is concerned, heavy modes warp spacetime and sometime cannot be neglected.
Computation of the energy

- Boundary terms come only from the kinetic parts, the potential has no role here.

- Contribution of $R(g)$

 $E = M - S \tilde{r}^{\gamma+1}$

- Contribution of $R(\tilde{g})$

 $\tilde{E} = \tilde{M} c^2 + S \tilde{r}^{\gamma+1}.$

- Total energy, finite even when $\tilde{r} \to \infty$!

 \[E_{tot} = E + \tilde{E} = M + \tilde{M} c^2 \]

- Beware! Consider a the frozen \tilde{g} theory, equivalent to $\kappa \to \infty$. The solution for g is similar, but there is no \tilde{E} contribution. Energy is infinite!

- No decoupling effects of “heavy modes” of \tilde{g}, needed to account for all energy budget.

- Effective field theories are tricky in gravity when energy is concern, heavy modes warp spacetime and sometime cannot be neglected.
Computation of the energy

- Boundary terms come only from the kinetic parts, the potential has no role here.

- Contribution of $R(g)$: $E = M - S \bar{r}^{\gamma+1}$

- Contribution of $R(\tilde{g})$: $\tilde{E} = \tilde{M} c^2 + S \bar{r}^{\gamma+1}$.

- Total energy, finite even when $\bar{r} \to \infty$!

$$E_{tot} = E + \tilde{E} = M + \tilde{M} c^2$$

- Beware! Consider a the frozen \tilde{g} theory, equivalent to $\kappa \to \infty$. The solution for g is similar, but there is no \tilde{E} contribution. Energy is infinite!

- No decoupling effects of “heavy modes” of \tilde{g}, needed to account for all energy budget.

- Effective field theories are tricky in gravity when energy is concerned, heavy modes warp spacetime and sometime cannot be neglected.
Computation of the energy

- Boundary terms come only from the kinetic parts; the potential has no role here.
- Contribution of $R(g)$:
 \[E = M - S \bar{r}^{\gamma+1} \]
- Contribution of $R(\tilde{g})$:
 \[\tilde{E} = \tilde{M} c^2 + S \bar{r}^{\gamma+1} \]
- Total energy, finite even when $\bar{r} \to \infty$:
 \[E_{tot} = E + \tilde{E} = M + \tilde{M} c^2 \]

Beware! Consider a the frozen \tilde{g} theory, equivalent to $\kappa \to \infty$. The solution for g is similar, but there is no \tilde{E} contribution. Energy is infinite!

No decoupling effects of “heavy modes” of \tilde{g}, needed to account for all energy budget.

Effective field theories are tricky in gravity when energy is concerned, heavy modes warp spacetime and sometime cannot be neglected.
Computation of the energy

- Boundary terms come only from the kinetic parts, the potential has no role here.
- Contribution of $R(g)$: $E = M - S \bar{r}^{\gamma + 1}$
- Contribution of $R(\tilde{g})$: $\tilde{E} = \tilde{M} c^2 + S \bar{r}^{\gamma + 1}$.
- Total energy, finite even when $\bar{r} \to \infty$!

$$E_{tot} = E + \tilde{E} = M + \tilde{M} c^2$$

- Beware! Consider a the frozen \tilde{g} theory, equivalent to $\kappa \to \infty$. The solution for g is similar, but there is no \tilde{E} contribution. Energy is infinite!
- No decoupling effects of “heavy modes” of \tilde{g}, needed to account for all energy budget.
- Effective field theories are tricky in gravity when energy is concerned, heavy modes warp spacetime and sometime cannot be neglected.
Conclusions and Outlook

- A non-standard Newton potential calls for modified gravity.
- Bigravity is a great tool for studying massive deformation of GR.
- No dDVZ discontinuity in bigravity massive deformation.
- Spherically symmetric solution featuring:
 1. First nontrivial large distance modification of gravity
 2. Finite total energy

Outlook

- Full canonical analysis of bigravity. What does propagate?
- Are all modes safe?
- Cosmological impact of massive deformation.
Conclusions and Outlook

- **A non-standard Newton potential** calls for modified gravity.
- **Bigravity** is great tool for studying massive deformation of GR.
- No dDVZ discontinuity in bigravity massive deformation.
- Spherically symmetric solution featuring:
 1. First nontrivial large distance modification of gravity.
 2. Finite total energy.

Outlook
- Full canonical analysis of bigravity. What does propagate?
 - Are all modes safe?
- Cosmological impact of massive deformation.
Conclusions and Outlook

- A non-standard Newton potential calls for modified gravity.
- Bigravity is a great tool for studying massive deformation of GR.
- No dDVZ discontinuity in bigravity massive deformation.
- Spherically symmetric solution featuring:
 1. First nontrivial large distance modification of gravity
 2. Finite total energy

Outlook

- Full canonical analysis of bigravity. What does propagate?
- Are all modes safe?
- Cosmological impact of massive deformation.
Conclusions and Outlook

- A non-standard Newton potential calls for modified gravity.
- Bigravity is a great tool for studying massive deformation of GR.
- No dDVZ discontinuity in bigravity massive deformation.
- Spherically symmetric solution featuring:
 1. First nontrivial large distance modification of gravity
 2. Finite total energy

Outlook

- Full canonical analysis of bigravity. What does propagate?
- Are all modes safe?
- Cosmological impact of massive deformation

Conclusions and Outlook

- A non-standard Newton potential calls for modified gravity.
- Bigravity is a great tool for studying massive deformation of GR.
- No dDVZ discontinuity in bigravity massive deformation.
- Spherically symmetric solution featuring:
 1. First nontrivial large distance modification of gravity
 2. Finite total energy

Outlook

- Full canonical analysis of bigravity. What does propagate?
- Are all modes safe?
- Cosmological impact of massive deformation
Conclusions and Outlook

- A non-standard Newton potential calls for modified gravity.
- Bigravity is a great tool for studying massive deformation of GR.
- No dDVZ discontinuity in bigravity massive deformation.
- Spherically symmetric solution featuring:
 1. First nontrivial large distance modification of gravity
 2. Finite total energy

Outlook

- Full canonical analysis of bigravity. What does propagate? Are all modes safe?
- Cosmological impact of massive deformation
Conclusions and Outlook

- A non-standard Newton potential calls for modified gravity.
- Bigravity is a great tool for studying massive deformation of GR.
- No dDVZ discontinuity in bigravity massive deformation.
- Spherically symmetric solution featuring:
 1. First nontrivial large distance modification of gravity.
 2. Finite total energy.

Outlook

- Full canonical analysis of bigravity. What does propagate?
- Are all modes safe?
- Cosmological impact of massive deformation.
Massive Deformed GR

Not an easy task!

Challenge

Build a version of GR modified at large distances such that

- It is consistent with experiments in the solar system
- Ideally valid up to the scale \(\Lambda_2 = (M_{pl} m)^{1/2} \)

 As for broken gauge theories, gauge boson mass \(\sim m \)

 \[\Lambda_2 = m g^{-1} = m \left(\frac{\Lambda_2}{M_{pl}} \right)^{-1} \Rightarrow \Lambda_2^2 = m M_{pl}^2 \]

From GR valid up to distances \(> 10^{-33} \text{ cm} \) to

Massive GR valid up to distances \(> \Lambda_2^{-1} \sim \left[10^{-33} m^{-1} (\text{cm}) \right]^{1/2} \text{ cm} \)
Massive Deformed GR

Not an easy task!

Challenge
Build a version of GR modified at large distances such that

- It is consistent with experiments in the solar system
- Ideally valid up to the scale $\Lambda_2 = (M_{pl} m)^{1/2}$
 as for broken gauge theories, gauge boson mass $\sim m$

$$\Lambda_2 = mg^{-1} = m \left(\Lambda_2 / M_{pl}\right)^{-1} \Rightarrow \Lambda_2^2 = m M_{pl}^2$$

From GR valid up to distances $> 10^{-33}$ cm to
Massive GR valid up to distances $> \Lambda_2^{-1} \sim \left[10^{-33} m^{-1} (\text{cm})\right]^{1/2}$ cm
Massive Deformed GR

Not an easy task!

Challenge
Build a version of GR modified at large distances such that

- It is consistent with experiments in the solar system
- Ideally valid up to the scale \(\Lambda_2 = (M_{pl} m)^{1/2} \)
 as for broken gauge theories, gauge boson mass \(\sim m \)
 \(\Lambda_2 = m g^{-1} = m \left(\frac{\Lambda_2}{M_{pl}} \right)^{-1} \Rightarrow \Lambda_2^2 = m M_{pl}^2 \)

From GR valid up to distances \(> 10^{-33} \text{ cm} \) to
Massive GR valid up to distances \(> \Lambda_2^{-1} \sim \left[10^{-33} m^{-1} \text{ cm} \right]^{1/2} \text{ cm} \)
Massive Deformed GR

Not an easy task!

Challenge
Build a version of GR modified at large distances such that

- It is consistent with experiments in the solar system
- Ideally valid up to the scale $\Lambda_2 = (\Lambda_2/M_{pl})^{1/2}$
 as for broken gauge theories, gauge boson mass $\sim m$

$$\Lambda_2 = mg^{-1} = m\left(\Lambda_2/M_{pl}\right)^{-1} \Rightarrow \Lambda_2^2 = mM_{pl}^2$$

From GR valid up to distances $> 10^{-33}$ cm to
Massive GR valid up to distances $> \Lambda_2^{-1} \sim \left[10^{-33}m^{-1}(cm)\right]^{1/2}$ cm
Class of exact solvable potentials

If \(\{ \lambda_i, \ i = 0, \cdots, 3 \} \) are the eigenvalues of \(X \), the potentials

\[
V_n = \sum_{i_1 > i_2 \cdots > i_n} \lambda_{i_1} \lambda_{i_2} \cdots \lambda_{i_n}
\]

lead to analytically solvable equations

Examples

\[
V_1 = \frac{1}{6|\tilde{g}|} (\epsilon \epsilon \tilde{g} \tilde{g} \tilde{g} g) = \frac{1}{6 \text{Det}(X)} (\tau_1^3 - 3 \tau_2 \tau_1 + 2 \tau_3)
\]

\[
V_2 = \frac{1}{2|\tilde{g}|} (\epsilon \epsilon \tilde{g} \tilde{g} g g) = \text{Det}(X)^{-1} (\tau_1^2 - \tau_2)
\]

\[
V_3 = \frac{1}{|\tilde{g}|} (\epsilon \epsilon \tilde{g} g g g) = 6 \text{Det}(X)^{-1} \tau_1
\]
Class of exact solvable potentials

If \(\{ \lambda_i, i = 0, \cdots, 3 \} \) are the eigenvalues of \(X \), the potentials

\[
V_n = \sum_{i_1 > i_2 \cdots > i_n} \lambda_{i_1} \lambda_{i_2} \cdots \lambda_{i_n}
\]

lead to analytically solvable equations

Examples

\[
V_1 = \frac{1}{6|\tilde{g}|}(\varepsilon \varepsilon \tilde{g} \tilde{g} \tilde{g} g) = \frac{1}{6\text{Det}(X)}(\tau_1^3 - 3 \tau_2 \tau_1 + 2 \tau_3)
\]

\[
V_2 = \frac{1}{2|\tilde{g}|}(\varepsilon \varepsilon \tilde{g} \tilde{g} g g) = \text{Det}(X)^{-1}(\tau_1^2 - \tau_2)
\]

\[
V_3 = \frac{1}{|\tilde{g}|}(\varepsilon \varepsilon \tilde{g} g g g) = 6\text{Det}(X)^{-1} \tau_1
\]
In adapted coordinates \((t, x^i)\), ADM energy measured by an observer with a clock ticking \(t\)

\[
H_{tot} = \int_{t=\text{const}} d^3x \left[\mathcal{H} N + \mathcal{H}_i N^i \right] + \int_{S^2, r \to \infty} d^2x B
\]

on shell

\[
\int_{S^2, r \to \infty} d^2x B
\]

\(S^2\) is 2-sphere bounding space \((t = \text{const})\) at infinity

- The value of \(B\) and then the total energy depends on the detailed asymptotics of \(g_{\mu\nu}\)
- For asymptotically flat spacetime, \(h_{ij} \sim \delta_{ij}/r\) at large \(r\), and using asymptotics Cartesian coordinates \(x^i\)

\[
H_{tot, \text{on shell}} = \int_{S^2, r \to \infty} d^2x \sqrt{\sigma} \left(\frac{\partial h_{ij}}{\partial x^j} - \delta^{mn} \frac{\partial h_{mn}}{\partial x^i} \right) n^i
\]
In adapted coordinates \((t, x^i)\), ADM energy measured by an observer with a clock ticking \(t\)

\[
H_{\text{tot}} = \int_{t=\text{const}} d^3x \left[\mathcal{H} N + \mathcal{H}_i N^i \right] + \int_{S^2, r \to \infty} d^2x B
\]

\(S^2\) is 2-sphere bounding space \((t = \text{const})\) at infinity

The value of \(B\) and then the total energy depends on the detailed asymptotics of \(g_{\mu\nu}\)

For asymptotically flat spacetime, \(h_{ij} \sim \delta_{ij}/r\) at large \(r\), and using asymptotics Cartesian coordinates \(x^i\)

\[
H_{\text{tot, on shell}} = \int_{S^2, r \to \infty} d^2x \sqrt{\sigma} \left(\frac{\partial h_{ij}}{\partial x^l} - \delta^{mn} \frac{\partial h_{mn}}{\partial x^l} \right) n^i
\]
In adapted coordinates \((t, \ x^i)\), ADM energy measured by an observer with a clock ticking \(t\)

\[
H_{\text{tot}} = \int_{t = \text{const}} d^3 x \left[H_N + H_i N^i \right] + \int_{S^2, \ r \to \infty} d^2 x B \]

on shell

\[
\int_{S^2, \ r \to \infty} d^2 x B
\]

\(S^2\) is 2-sphere bounding space \((t = \text{const})\) at infinity

The value of \(B\) and then the total energy depends on the detailed asymptotics of \(g_{\mu\nu}\)

For asymptotically flat spacetime, \(h_{ij} \sim \delta_{ij}/r\) at large \(r\), and using asymptotics Cartesian coordinates \(x^i\)

\[
H_{\text{tot, on shell}} = \int_{S^2, \ r \to \infty} d^2 x \sqrt{\sigma} \left(\frac{\partial h_{ij}}{\partial x^j} - \delta^{mn} \frac{\partial h_{mn}}{\partial x^i} \right) n^i
\]
ADM limitations: derivatives of \(h_{ij} \) (extrinsic curvature) must fall-off at least as \(1/r^2 \) to be well defined

Coordinates must be Cartesian at Infinity No good for our solution!
Large distances: \(D \sim 1/\sqrt{r} \) (for \(\gamma < -1 \)). Too slow

Analogous to the Schwarzschild solution written in Painlevé coordinates: \(dt = dT - f' dr \)

\[
\begin{align*}
 ds^2 &= -J \, dt^2 + J^{-1} \, dr^2 + r^2 \, d\Omega^2 \\
 &= -J \, dT^2 + 2f' \, J \, dT \, dr + dr^2 + 2f' \, J \, dT \, dr + r^2 \, d\Omega^2 \\
 f'^2 &= J^{-2} - 1
\end{align*}
\]

ADM energy is zero in Painleve coordinates !! In reality is not defined in Painleve coordinates. Extrinsic curvature does not have the right fall-off

We need a more general tool: Gravitational energy as a Noether charge
ADM limitations: derivatives of h_{ij} (extrinsic curvature) must fall-off at least as $1/r^2$ to be well defined

Coordinates must be Cartesian at Infinity No good for our solution! Large distances: $D \sim 1/\sqrt{r}$ (for $\gamma < -1$). Too slow

Analogous to the Schwarzschild solution written in Painlevé coordinates: $dt = dT - f' dr$

$$ds^2 = -J dt^2 + J^{-1} dr^2 + r^2 d\Omega^2$$
$$= -J dT^2 + 2f' J dT dr + dr^2 + 2f' J dT dr + r^2 d\Omega^2$$

$$f'^2 = J^{-2} - 1$$

ADM energy is zero in Painleve coordinates!! In reality is not defined in Painleve coordinates. Extrinsic curvature does not have the right fall-off

We need a more general tool: Gravitational energy as a Noether charge
ADM limitations: derivatives of h_{ij} (extrinsic curvature) must fall-off at least as $1/r^2$ to be well defined.

Coordinates must be Cartesian at Infinity. No good for our solution! Large distances: $D \sim 1/\sqrt{r}$ (for $\gamma < -1$). Too slow.

Analogous to the Schwarzschild solution written in Painlevé coordinates: $dt = dT - f' dr$

$$ds^2 = -J dt^2 + J^{-1} dr^2 + r^2 d\Omega^2$$

$$= -J dT^2 + 2f' J dT dr + dr^2 + 2f' J dT dr + r^2 d\Omega^2$$

$$f'^2 = J^{-2} - 1$$

ADM energy is zero in Painleve coordinates!! In reality is not defined in Painleve coordinates. Extrinsic curvature does not have the right fall-off.

We need a more general tool: Gravitational energy as a Noether charge.
ADM limitations: derivatives of h_{ij} (extrinsic curvature) must fall-off at least as $1/r^2$ to be well defined

Coordinates must be Cartesian at Infinity. No good for our solution! Large distances: $D \sim 1/\sqrt{r}$ (for $\gamma < -1$). Too slow

Analogous to the Schwarzschild solution written in Painlevé coordinates: $dt = dT - f'dr$

$$ds^2 = -J dt^2 + J^{-1} dr^2 + r^2 d\Omega^2$$

$$= -J dT^2 + 2f' J dT dr + dr^2 + 2f' J dT dr + r^2 d\Omega^2$$

$$f'^2 = J^{-2} - 1$$

ADM energy is zero in Painleve coordinates!! In reality is not defined in Painleve coordinates. Extrinsic curvature does not have the right fall-off

We need a more general tool: Gravitational energy as a Noether charge