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Potential falling slower than 1/r ?

Suppose we have a solution of Einstein equations with a static
potential ¢, gt =—-1-2¢
that, at large distances, falls off slower than 1/r
@ The total energy of the system would infinite. According Newton,
source’s total mass is ~ flux of Vo

1

E=-—
47TG Sp

d’°xVe - h

Finite Eonly if o ~1/r
@ No such a solution in perturbative GR: Green function goes as 1/r
@ Modify gravity , Why do we need a non-Newtonian potential ?
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A 90 year-long successful theory
a single free parameter and it works great J

@ Equivalence principle 10~'2 level

@ Solar system tests (weak field) 10~* level

@ Binary pulsar (nonlinear) 1072 level
however .....

@ there are some puzzling features at large distances

@ CMB + Supernovae data require Dark energy
p = wp,w < 0. Expanded acceleration
Perhaps just a tiny (??) cosmological constant, w = —1,
A ~ (10~*eV)* or a bizarre fluid?

@ Is GR an isolated theory ? How rigid is GR ?
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° GR M2ED =T8) . Gu = + B
DOF10-2x4=2 4 gauge modes dh,, = 9,& + 0,&,

@ Massive gravitons (Minkowski) have 5 DOF, more DOF needed

@ Give up gauge symmetry. Fierz-Pauli theory (1939)

Lep = MZ LZ), + MEmP (ahu, b + bH?)
E\) — imP (ahu + bhn) = M2TS)  0vER) =0
4 constraints DOF10-4=6=5+1

@ The sixth mode is a ghost (Boulware-Deser).
Absent in flat space when a + b = 0 (FP theory)
present in curved space and at the nonlinear level

@ When the ghost is projected out, light bending badly contradicts
experiments (van Dam, Veltman, Zakharov) vdVZ discontinuity ¥
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Beyond the Linear Level

Bottom line )

Massive gravity around Minkowski background is problematic )

@ Linear FP theory suffers from vDVZ discontinuity
@ Nonlinear effects are dominated by unknown UV physics

@ Very low cutoff, solar system scale physics cannot be trusted if
m~ H

Giving up Minkowski background can help )

@ At linearized level there is no ghost, no vDVZ discontinuity
FP tuning not needed
@ Also propagation around curved background looks better

Rubakov, Dubowsky, Comelli-Nesti-Pilo
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Step 1: Recasting the mass term )

) gFW — 77!“’ — h* 4 hﬂah’é + .. = gNVnw/
represents a mass term

@ To recover diff (gauge) invariance replace 7, by a dynamical
(Stuckelberg) extra metric field gy,
Muy — Quu

@ New tensor from the two metric X}’ = g**Q..,

@ Typical mass terms are made out 7, = Tr(X")

a(ry —4)? +b(rp—2m +4) = (ahuh™ +bh?) +---
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Step 2: Stuckelberg Dynamics )

@ The extra metrics is turned into a dynamical field

Suan = [ d*x [VaME Rlg) + 1 M VG A(E) - 4(59)'/* V(X)]

@ Matter couples only to g,

@ Gauge symmetry: Diff

@ When k — o0, g, gets non-dynamical and flat: g, = el €57iap
ed = d¢a and Q;w = 8,u¢a8u¢b ﬁab

@ When k — oo the stuckelberg fields are ¢?2
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@ In the bigravity unitary gauge and x — oo, the stuckelberg fields
are ¢

@ Powerful formalism to treat in unified way both the Lorentz
preserving and Lorentz breaking cases

Xbkg = Diag(1, 1, 1, 1) Lorentz preserving (LI) background

Xbkg = Diag(a, b, b, b) Lorentz breaking (LB) background
only rotational symmetry is present

@ For any V the LI background is always present

@ Modified Einstein equations (Bigravity Unitary gauge)
MZ EL + [Det(X)]'/* [V ol — 4(V'X)!] = T
K M2 El + [Det(X)] V4 [V ét + 4(V'X)!] =0
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Exact Solutions, why ?

@ In massive gravity perturbation theory can be tricky

@ Check in a non-perturbative way the presence/absence of vDVZ
discontinuity

@ The spherically symmetric case in GR is the perfect benchmark
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@ Spherically symmetric ansatz
ds® = —J(r) dt? + K(r)dr? + r? dQ?
ds? = —C(r) dt? + A(r) dr? + 2D(r) dtdr + B(r) dQ?
@ Einstein equations
M? EY + [Det(X)]'/* [V st — 4(V'X)!] =0
Kk MZ Et + [Det(X)] V4 [Vl +4(V'X)!] =0

Finding all solutions if very hard. Consider solutions with D # 0
Potential independent analysis: g, is diagonal = E// diagonal
= (V'X). diagonal = E/' diagonal = E] = E2 = K = J

@ First result potential independent: i) = ¢, leading PN physics
same as in GR. Solar system tests are OK !
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J = (1—26rm‘>+268ﬂ, KJ =1
2Gm. 2G N

©- 02‘”2(1‘ /@r2>cw2,€sr’, D? 4 AC = P’

B = w2r2, A=...

@ Integration constants: my, m, and S. Determined by the
parametersin V: ¢, w

@ When~ < 2, forr — oo
g — diag(—1,1,1,1) and g — w?diag(—c?,1,1,1)

Lorentz Breaking asymptotics for ¢ # 1

@ When S # 0 nontrivial modification but still flat at infinity when
v < 2. When —1 < v < 2 the large r behaviour is modified !

@ In general the solution can by AdS or dS at infinity (v < 2) ¥
not shown - - -
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Total Energy

To be physical the solution must have finite total energy
Energy in GR is tricky J

@ Equivalence principle forbids localization of gravitational energy
Hypothetical EMT of gravity: Tgr(Xo) ~ F(9 g)x,- But at each xq
9(x) =nand 99(x) =0 = Ter(X) =0

@ Energy cannot be taken apart but must be considered as whole
Locally there is no gravity !

@ Energy in GR is the conserved charge associated with an arbitrary
translation in time, diff generated by a timelike vector

@ Equivalently, given a solution, its ADM energy is the value of the
Hamiltonian
Needed: a splitting of spacetime in space + time
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@ Consider the Noether charge associated to timelike translations:
xH — xH 4 €1 with €2 < 0

@ Choose a set boundary condition for dynamical variables, adjust
boundary terms in the action so that the charge is a scalar

(coordinate independent). NB a reference metric is needed. We
use flat space

@ Fixing the induced metric on the the 2-surface t = const, r =r
with ¥ large, we get the Nester expression for the energy

E =

1 2
327G /S 82 €po

<§T|—|,8)\Ara 5/11/7 + vﬂgaAI—IIB)\ 6#1/) 8X Ox

dzl dz2’
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Energy as a Noether Charge

@ Consider the Noether charge associated to timelike translations:
xH — xH 4 €1 with €2 < 0

@ Choose a set boundary condition for dynamical variables, adjust
boundary terms in the action so that the charge is a scalar
(coordinate independent). NB a reference metric is needed. We
use flat space

@ Fixing the induced metric on the the 2-surface t = const, r =r
with ¥ large, we get the Nester expression for the energy

1 2
E= 327TG/S,d Z €popw

(¢7n7arg, o7 + T An oty

) X 0x7
dz' dz2”’

@ For Schwarzschild , E = M, even in Painleve coordinates. Actually
does not depend on coordinates ! Ideal tool fo us ¥
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Computation of the energy

@ Boundary terms come only from the kinetic parts
the potential has no role here

@ Contribution of R(g) E=M-Spr+!
@ Contribution of R(g) E=Mc?+sptt,
@ Total energy, finite even when r — oo !

Eot=E+E=M+Mc?

@ Beware ! Consider a the frozen g theory, equivalent to k — cc.
The solution for g is similar, but there is no E contribution. Energy
is infinite !

@ No decoupling effects of “heavy modes” of g, needed to account
for all energy budget

@ Effective field theories are tricky in gravity when energy is
concerned, heavy modes warp spacetime and sometime cannot
be neglected
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@ A non-standard Newton potential calls for modified gravity.
@ Bigravity is great tool for studying massive deformation of GR
@ No dDVZ discontinuity in bigravity massive deformation

@ Spherically symmetric solution featuring:

@ First nontrivial large distance modification of gravity
@ Finite total energy

@ Outlook

e Full canonical analysis of bigravity. What does propagate ?
Are all modes safe ?
o Cosmological impact of massive deformation
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Massive Deformed GR

Not an easy task !

Challenge
Build a version of GR modified at large distances such that J

@ It is consistent with experiments in the solar system

e ideally valid up to the scale Ay = (Mpm)'/2
as for broken gauge theories, gauge boson mass ~ m
No=mg'=m (/\g/Mp,)_1 =N\ = mMg,

From GR valid up to distances > 10733 cm to

Massive GR valid up to distances > A;" ~ [10-33m~"(cm)]"® ¢

m
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Modifying Schwarzschild |l

Class of exact solvable potentials )

If {\;, i =0, --,3} are the eigenvalues of X, the potentials
Vo= > XAy
Iy >lp+>in

lead to analytically solvable equations

Examples J
Vi= L (ccGGGG) = ot (% — Bramy +27)
"= 6g\ 9999 = gpet(xy\T T 0TI T AT
1
Ve = 5rz1(cc8099) = Det(X) (¥ — 2)

1 -
V3=@(€€QQQQ):6D9'[(X)_1T1 ¥
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Energy |

@ In adapted coordinates (t, x’), ADM energy measured by an
observer with a clock ticking t

Higr = / o3x [H N +H, N’} + / d?xB
t=const S

2, r—oo
on shell
= / d’xB
S2 r—oco

S? is 2-sphere bounding space (t = const) at infinity
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@ In adapted coordinates (t, x’), ADM energy measured by an
observer with a clock ticking t

Higr = / oBx [H N +H, N’} + / o?xB
t=const 82, r—o00

on ;hell / d2XB
S2, r—oo

S? is 2-sphere bounding space (t = const) at infinity

@ The value of B and then the total energy depends on the detailed
asymptotics of g,

@ For asymptotically flat spacetime, hj ~ dji/r at large r, and using
asymptotics Cartesian coordinates x’

Ohji oh ;
Hiot, on shell = / def( /- mnnj'n> n
82 r—o0 ox
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@ ADM limitations: derivatives of hj; (extrinsic curvature) must fall-off
at least as 1/r? to be well defined
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@ Coordinates must be Cartesian at Infinity No good for our solution
| Large distances: D ~ 1//r (for v < —1). Too slow

@ Analogous to the Schwarzschild solution written in Painlevé
coordinates: dt = dT — f'dr

ds? = —Jdt? +J 1 dr? + r? dQ?
= —JdT? +2fJdTdr + dr® + 2f'J dTadr + r? dQ?
2 =021

ADM energy is zero in Painleve coordinates !! In reality is not
defined in Painleve coordinates. Extrinsic curvature does not have
the right fall-off
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@ ADM limitations: derivatives of hj; (extrinsic curvature) must fall-off
at least as 1/r? to be well defined

@ Coordinates must be Cartesian at Infinity No good for our solution
| Large distances: D ~ 1//r (for v < —1). Too slow

@ Analogous to the Schwarzschild solution written in Painlevé
coordinates: dt = dT — f'dr

ds? = —Jdt? +J7 " dr? + r? dQ?
= —JdT? +2f'JdTdr + dr? + 2f'J dTar + r? dQ?
2 =021

ADM energy is zero in Painleve coordinates !! In reality is not

defined in Painleve coordinates. Extrinsic curvature does not have
the right fall-off

@ We need a more general tool: Gravitational energy as a Noether
charge
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