The Forward Backward Asymmetry in Top Production

Costas Vellidis Fermilab

CANE LOB

On behalf of the CDF Collaboration at the Tevatron

up 7 MeV 110 MeV 1.3 GeV 3 MeV

¹ /2 ⁺² /3 U up	¹ / ₂ +2/ ₃ C charm	¹ / ₂ + ² / ₃ t	Y
¹ ⁄2 ⁻ 1∕3 d down	1/2 -1/3 S strange	¹ /2 ⁻¹ /3 b bottom	Z
Ve	νμ	ντ	W
е	μ	τ	g

•

$\begin{array}{l} \text{Top Mass} \\ y_t = \sqrt{2} \cdot \frac{m_t}{v} \end{array}$

Higgs Vacuum Expectation

Average Energy in the Higgs Field

$\begin{array}{l} \text{I73 GeV} \\ y_t = \sqrt{2} \cdot \frac{m_t}{v} \\ \end{array} \end{array} \\ \begin{array}{l} \text{243 GeV} \end{array} \end{array}$

173 GeV $y_t = \sqrt{2} \cdot rac{m_t}{v} pprox 1.0$ 243 GeV

$$A_{FB} = \frac{F - B}{F + B}$$

- Test of discrete symmetries of the strong interaction
- NLO QCD predicts small (~6%) asymmetry from qq→tt
- New physics can show up: Big Gluons with axial vector coupling

- Test of discrete symmetries of the strong interaction
- NLO QCD predicts small (~6%) asymmetry from qq→tt
- New physics can show up: Big Gluons with axial vector coupling

Kuhn, Rodrigo PRL 81,89 (1998)

- Extract tt events from data collected at CDF
- Reconstruct the production angle of top in these events
- Correct for any distortion from the detector, background processes, and the method of reconstructing the angle
- Measure AFB

Production

$$\sigma_{tt}^{SM}$$
 = 7.5 pb

Decay

~100 %

One Lepton, One Neutrino, and 4 Quarks

I Electron or Muon ($E_T \ge 20$ GeV, $|\eta| < 1.1$)

Large "Missing" Energy (Et ≥ 20 GeV)

 \geq 4 Jets (Et \geq 20 GeV, $|\eta|$ < 2.0)

At least I Jet with displaced secondary vertex (Evidence of a 'b'-jet)

I Electron or Muon ($E_T \ge 20$ GeV, $|\eta| < 1.1$)

Large "Missing" Energy ($Et \ge 20 \text{ GeV}$)

 \geq 4 Jets (Et \geq 20 GeV, $|\eta|$ < 2.0)

At least I Jet with displaced secondary vertex (Evidence of a 'b'-jet)

1300 Events (5.3 fb⁻¹) 20 % Background

Reconstructing the Top Direction

- Reconstruct the top direction from the observables in the detector
- Algorithm used to match jets to partons → just add 4-vectors to get top direction
- We use the rapidity difference (ΔY) of t→lvb and t→jjb, which is proportional to Yt in tt frame

 $Y_t \propto q_{lepton} \cdot \Delta Y$

Reconstructing the Top Direction

- Reconstruct the top direction from the observables in the detector
- Algorithm used to match jets to partons → just add 4-vectors to get top direction
- We use the rapidity difference (ΔY) of t→lvb and t→jjb, which is proportional to Yt in tt frame

 $Y_t \propto q_{lepton} \cdot \Delta Y$

$$\mathbf{A}_{FB} = \mathbf{16} \pm \mathbf{7}_{stat} \pm \mathbf{2}_{syst} \%$$

5.3 fb⁻¹

Directly comparable to SM

 $A_{FB}^{Theory} = 6 \pm 1 \%$

Kuhn, Rodrigo PRL 81,89 (1998)

- A_{FB} could increase at higher energy due to new production mechanisms
- Study the asymmetry vs. the mass of the tt system (Mtt)
- Simply divide sample into high/low M_{tt}
- Use 450 GeV → based on MC studies

All PETRA experiments ($\sqrt{s} = 34 \text{ GeV}$)

	Inclusive	M < 450 GeV	M > 450 GeV	
Data	5.7 ± 2.8 %	-I ± 3 %	21 ± 5 %	
SM MC	2 ± 0.4 %	I ± 0.6 %	3 ± 0.7 %	

 Unfold M_{tt} dependence back to parton level

$$A_{FB} = 48 \pm 11_{stat+syst} \%$$

$$5.3 \text{ fb}^{-1}$$

$$A_{FD}^{Theory} = 9 \pm 1\%$$

- Alternative channel to previous measurement in single lepton+jets events
- Independent events using different reconstruction algorithm

2 Leptons ($E_T \ge 20$ GeV, $|\eta| < 1.1$)

Large "Missing" Energy ($E_T \ge 50$ GeV)

 \geq 2 Jets (E_T \geq 15 GeV, $|\eta|$ < 2.5)

 ΣE_T (jets, leptons) > 200 GeV

$$A_{FB} = 42 \pm 15_{stat} \pm 5_{syst} \%$$

5.1 fb⁻¹

 $A_{FB}^{Theory} = 6 \pm 1 \%$ $A_{FB}^{I+Jets} = 16 \pm 7 \%$

	L+J	DIL
Afb	$0.158 \pm 0.072(\text{stat}) \pm 0.017$ (sys)	$0.420 \pm 0.150(\text{stat}) \pm 0.053$ (sys)
Bkg L+J	0.013	0
Bkg DIL	0	0.043
JES	0.007	0.008
PDF	0.005	0.004
Signal Model	0.0065	0.029

$$A_{FB} = 20 \pm 7_{stat} \pm 2_{syst} \%$$

2.9 σ away from no symmetry

Inclusive Asymmetry

Summary of Results

For M_{tt} > 450 **GeV**

 $A_{FB} = 48 \pm 11_{stat+syst} \%$

$$A_{FB}^{Theory} = 9 \pm 1 \%$$

Not Clear Yet...

- Could be statistics
- Some very devious problem with reconstruction or acceptance
- NLO QCD effect is mis-calculated or requires further corrections
- Something new?

What's Next for AFB

- Time and data really need 4-5σ before we're sure it's not statistics
- D0 will tell us more comparable results, study mass dependence, combination
- Correlated to other observables → LHC needs to see something

STAY TUNED!

Backgrounds

• Too small, and the predicted asymmetry in backgrounds goes in the opposite direction

Reconstruction

 If it's broken, it's broken for MANY precision measurements that agree with the SM and other wellvetted techniques

• Unfolding

• The significance of the result is present before the acceptance/reconstruction corrections - they only scale the result

- Why do muons have a larger asymmetry than electrons?
- Why is the lab frame asymmetry stronger, yet less dependent on M_{tt} ?
- Why is the result in dileptons so much larger?

Muons vs Electrons

* before corrections

selection	N events	all M	$M < 450~{\rm GeV}/c^2$	$M \geq 450~{\rm GeV}/c^2$
standard	1260	$0.057 {\pm} 0.028$	-0.016 ± 0.034	$0.212{\pm}0.049$
electrons	735	$0.026 {\pm} 0.037$	-0.020 ± 0.045	$0.120{\pm}0.063$
muons	525	$0.105 {\pm} 0.043$	-0.012 ± 0.054	$0.348{\pm}0.080$
data $\chi^2 < 3.0$	338	$0.030{\pm}0.054$	-0.033 ± 0.065	0.180 ± 0.099
data no-b-fit	1260	$0.062 {\pm} 0.028$	0.006 ± 0.034	0.190 ± 0.050
data single b-tag	979	$0.058{\pm}0.031$	-0.015 ± 0.038	$0.224{\pm}0.056$
data double b-tag	281	$0.053 {\pm} 0.059$	-0.023 ± 0.076	$0.178 {\pm} 0.095$
data anti-tag	3019	$0.033{\pm}0.018$	$0.029 {\pm} 0.021$	$0.044{\pm}0.035$
pred anti-tag	-	$0.010 {\pm} 0.007$	$0.013 {\pm} 0.008$	$0.001{\pm}0.014$
pre-tag	4279	$0.040 {\pm} 0.015$	$0.017 {\pm} 0.018$	$0.100{\pm}0.029$
pre-tag no-b-fit	4279	$0.042{\pm}0.015$	$0.023{\pm}0.018$	$0.092{\pm}0.029$

What about the di-lepton result?

Flavor	Asymmetry	
Inclusive	14 ± 5 %	
e-e	27 ± 11 %	
e-u	6.4 ± 7.6 %	
u-u	17 ± 10 %	

$\mathbf{A}_{FB} = \mathbf{42} \pm \mathbf{15}_{stat} \pm \mathbf{5}_{syst} \%$

5.1 fb⁻¹

Reconstructed Top Rapidity Difference

 $A_{FB} = 16 \pm 7_{stat} \pm 2_{syst} \%$

• What is the optimal high/low bin-edge (based on MC) ?

		OctetA			OctetB	
	bin-edge	$A^{ t t}$	A^{tt} significance		significance	
	$({ m GeV}/c^2)$					
	345	0.082 ± 0.028	2.90	0.168 ± 0.028	5.99	
	400	0.128 ± 0.036	3.55	0.235 ± 0.035	6.74	
•	450	0.183 ± 0.047	3.91	0.310 ± 0.044	7.08	
	500	0.215 ± 0.060	3.60	0.369 ± 0.054	6.81	
	550	0.246 ± 0.076	3.25	0.425 ± 0.066	6.43	
	600	0.290 ± 0.097	2.97	0.460 ± 0.081	5.70	

Models provided by Tim Tait

- Select I 260 Events
- **Predict** ~ 1287
- ~ 20% background

Process	Prediction
W+Jets	181
QCD	67
Other	35
tī	1004
Data	1260

- Reconstruct the top direction from the observables in the detector
- Biggest problem is to match the jets in the detector to the "true" decay products of t and t ?
- 4 Jets to match to 4 quarks leads to 24 combinations
- Use the event topology to build an algorithm!

$$\chi^{2} = \sum_{i=l,jets} \frac{(p_{t}^{i,meas} - p_{t}^{i,fit})^{2}}{\sigma_{i}^{2}} + \sum_{j=x,y} \frac{(p_{j}^{UE,meas} - p_{j}^{UE,fit})^{2}}{\sigma_{j}^{2}}$$

$$+ \frac{(M_{jj} - M_W)^2}{\Gamma_W^2} + \frac{(M_{lv} - M_W)^2}{\Gamma_W^2} + \frac{(M_{bjj} - M_{fit})^2}{\Gamma_t^2} + \frac{(M_{blv} - M_{fit})^2}{\Gamma_t^2}$$

$$\chi^{2} = \sum_{i=l,jets} \frac{(p_{t}^{i,meas} - p_{t}^{i,fit})^{2}}{\sigma_{i}^{2}} + \sum_{j=x,y} \frac{(p_{j}^{UE,meas} - p_{j}^{UE,fit})^{2}}{\sigma_{j}^{2}}$$

$$+\underbrace{\frac{(M_{jj}-M_W)^2}{\Gamma_W^2}}_{\Gamma_W^2} + \frac{(M_{lv}-M_W)^2}{\Gamma_W^2} + \frac{(M_{bjj}-M_{fit})^2}{\Gamma_t^2} + \frac{(M_{blv}-M_{fit})^2}{\Gamma_t^2}$$

$$\chi^{2} = \sum_{i=l,jets} \frac{(p_{t}^{i,meas} - p_{t}^{i,fit})^{2}}{\sigma_{i}^{2}} + \sum_{j=x,y} \frac{(p_{j}^{UE,meas} - p_{j}^{UE,fit})^{2}}{\sigma_{j}^{2}}$$

$$+ \frac{(M_{jj} - M_W)^2}{\Gamma_W^2} + \underbrace{\frac{(M_{lv} - M_W)^2}{\Gamma_W^2}}_{\Gamma_W^2} + \frac{(M_{bjj} - M_{fit})^2}{\Gamma_t^2} + \frac{(M_{blv} - M_{fit})^2}{\Gamma_t^2}$$

$$\chi^{2} = \sum_{i=l,jets} \frac{(p_{t}^{i,meas} - p_{t}^{i,fit})^{2}}{\sigma_{i}^{2}} + \sum_{j=x,y} \frac{(p_{j}^{UE,meas} - p_{j}^{UE,fit})^{2}}{\sigma_{j}^{2}}$$

$$+ \frac{(M_{jj} - M_W)^2}{\Gamma_W^2} + \frac{(M_{lv} - M_W)^2}{\Gamma_W^2} + \underbrace{\frac{(M_{bjj} - M_{fit})^2}{\Gamma_t^2}}_{\Gamma_t^2} + \frac{(M_{blv} - M_{fit})^2}{\Gamma_t^2}$$

$$\chi^{2} = \sum_{i=l,jets} \frac{(p_{t}^{i,meas} - p_{t}^{i,fit})^{2}}{\sigma_{i}^{2}} + \sum_{j=x,y} \frac{(p_{j}^{UE,meas} - p_{j}^{UE,fit})^{2}}{\sigma_{j}^{2}}$$

$$+ \frac{(M_{jj} - M_W)^2}{\Gamma_W^2} + \frac{(M_{lv} - M_W)^2}{\Gamma_W^2} + \frac{(M_{bjj} - M_{fit})^2}{\Gamma_t^2} + \frac{(M_{blv} - M_{fit})^2}{\Gamma_t^2}$$

$$\chi^{2} = \sum_{i=l,jets} \frac{(p_{t}^{i,meas} - p_{t}^{i,fit})^{2}}{\sigma_{i}^{2}} + \sum_{j=x,y} \frac{(p_{j}^{UE,meas} - p_{j}^{UE,fit})^{2}}{\sigma_{j}^{2}}$$

$$+ \frac{(M_{jj} - M_W)^2}{\Gamma_W^2} + \frac{(M_{lv} - M_W)^2}{\Gamma_W^2} + \frac{(M_{bjj} - M_{fit})^2}{\Gamma_t^2} + \frac{(M_{blv} - M_{fit})^2}{\Gamma_t^2}$$

All particle energies and angles are available after reconstruction

http://www-cdf.fnal.gov/physics/new/top/2010/tprop/Afb/validation.html

- Use the top rapidity (Yt) to measure the asymmetry
- Unfortunately, we do not reconstruct top or antitop, rather t→lvb and t→jjb
- Rapidity difference (ΔY) of t and t is proportional to Yt in tt rest frame
- Measure A_{FB} using ΔY

$$\Delta \mathbf{Y} = \mathbf{q_{lep}} \cdot \left(\mathbf{Y_{lep}} - \mathbf{Y_{had}} \right)$$

- Use the top rapidity (Yt) to measure the asymmetry
- Unfortunately, we do not reconstruct top or antitop, rather t→lvb and t→jjb
- Rapidity difference (ΔY) of t and t is proportional to Yt in tt rest frame
- Measure A_{FB} using ΔY

$$\mathbf{\Delta Y} = \mathbf{q_{lep}} \cdot \left(\mathbf{Y_{lep}} - \mathbf{Y_{had}}\right)$$

Uncorrected

A_{FB} = 5.7 ± 2.8 %

- The shape in data can be biased and diluted by backgrounds, acceptance, and poor reconstruction
- Each effect has to be corrected to compare our measurement to theory

- Subtract predicted background shape from data
- Resulting distribution is the tt production angle after selection and reconstruction

Bkg Corrected A_{FB} = 7.5 ± 3.7 %

50

- Mis-reconstruction of the top production angle will dilute or skew the true asymmetry
- Can correct for this by simulating smearing in Monte
 Carlo and applying to data

 Derive smearing matrix (S) from MC

	$s_{0,0}$	$s_{0,1}$	 $s_{0,nbins}$]
[Recon] =	$s_{1,0}$	$s_{1,1}$	 	[True]
[]			 	[[]
	s_{nbins0}		 $s_{nbins,nbins}$	

• The matrix is inverted to correct for smearing

Reconstructed Top Rapidity Difference

Correcting Acceptance

 Similarly, detector acceptance is represented as a matrix (A)

$$[Selected] = \begin{bmatrix} \epsilon_0 & 0 & 0 & 0\\ 0 & \epsilon_1 & 0 & 0\\ 0 & 0 & \dots & 0\\ 0 & 0 & 0 & \epsilon_{nbins} \end{bmatrix} [True]$$

Reconstructed Top Rapidity Difference $A_{fb}^{Data} = 0.057 \pm 0.028$ Events 🛨 Data CDF II Preliminary L = 5.3 fb⁻¹ 450 tt + Bkg $A_{fb}^{t\bar{t}+Bkg} = -0.011 \pm 0.0025$ Bkg Signal = -0.013 ± 0.0021 400 Bkg = -0.0051± 0.0082 350 300 250 200 150 **100**⊢ **50** 0<u></u>3 -2 -1 0 1 2 $\mathbf{q} \Delta \mathbf{y} = \mathbf{y}_{\mathbf{t}} - \mathbf{y}_{\mathbf{t}}$

- Cascade correction matrices and apply to the background corrected data
- Result can then be directly compared to the Standard Model

$$Corrected = A^{-1} \cdot S^{-1} \cdot (Data - Bkg)$$

• Simple Example of a smearing matrix

$$\begin{bmatrix} d_1 \\ d_2 \end{bmatrix} = \frac{1}{2} \cdot \begin{bmatrix} 1+\epsilon & 1-\epsilon \\ 1-\epsilon & 1+\epsilon \end{bmatrix} \cdot \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$$

Inverted to solved for truth, you get

$$\begin{bmatrix} t_1 \\ t_2 \end{bmatrix} = \frac{d_1 + d_2}{2} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \frac{d_1 - d_2}{2\epsilon} \cdot \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

• If d1 - d2 are not statistically distinct, then bad smearing can dominate the solution! Need a way to dampen these terms...

Afb in Dileptons

- Leptons well measured, but missing two neutrino momenta and match jets to b quarks
- Energy, momentum constraints lead to 4 possible solutions
- Best solution chosen from likelihood based on PDF's for Pz^{tt}, PT^{tt}, and Mtt
- Top and anti-top direction both fully reconstructed

 Alternative measurement at CDF (Karlsruhe)

AFB = 24 ± 14_{stat+sys} %

- Measured in tt rest frame
- Performed with 1.9 fb⁻¹

 $A_{FB}^{SM} = 7 \pm 2 \%$

- Døcollaboration has also performed this measurement
- Do compares the result to the SM as seen by the detector (only corrects for backgrounds)

$$A_{FB}^{data-bkg} = 8 \pm 4_{stat+sys} \%$$

$$A_{FB}^{mc@nlo} = I^{+2.0}_{-1.0} \%$$

$$A_{FB}^{CDF} = 7.5 \pm 3.7 \%$$