Towards the Very Large Volume Mediterranean Neutrino Telescope, KM3NeT

Apostolos G. Tsirigotis

Physics Laboratory
School of Science & Technology
Hellenic Open University

on behalf of the KM3NeT consortium
KM3NeT

OUTLINE

- Physics case & Main objectives
- KM3NeT Design
- Telescope performance
- Conclusions
Physics Case & Main objectives

- **Main physics goals**
 - Origin of Cosmic Rays and Astrophysical \(\nu \) sources
 - Galactic Candidate \(\nu \) Sources (SNRs, Fermi Bubbles, microquasar, ...)
 - Extragalactic Candidate \(\nu \) Sources (AGN, GRB, ...)
 - Diffuse Fluxes

- **Implementation requirements**
 - Construction time \(\leq 5 \) years
 - Operation over at least 10 years without “major maintenance”

- **Cabled platform for deep-sea research**
 - Environmental sciences
 - Geology and geophysics
 - Marine biology and oceanography
Sky view of the KM3NeT

FOV for up-going neutrinos shown

24h per day visibility up to declination $\delta \sim -50^\circ$

Visibility > 25% of time
Visibility > 75% of time

KM3NeT covers most of the sky (87%) including the Galactic Centre

Apostolos G. Tsirigotis, HEP 2011
KM3NeT lay-out

KM3NeT in numbers
- ~12000 OMs
- ~300 DU
- 20 storey/DU
- ~40m storey spacing
- ~1 km DU height
- ~180m DU distance
- ~5 km³ volume
- ~220 MEuro cost

Detection Unit (DU): mechanical structure holding OMs, environmental sensors, electronics,...

DU is the building block of the telescope

Optical Module (OM): pressure resistant sphere containing photo-multippliers

Apostolos G. Tsirigotis, HEP 2011
Optical Module - Multi-PMT

- 31 3” PMTs (~30% max QE) inside a 17” glass sphere with 31 bases (total ~6.5W)
- Cooling shield and stem
- First full prototype under test

- Single vs multi-photon hit separation
- Large (1260 cm2) photocade area per OM

Apostolos G. Tsirigotis, HEP 2011
Front End Electronics

- Read-out SCOTT ASIC
 - Time over threshold with adjustable thresholds
 - Digitised output
 - Zero suppression

- System on chip
 - FPGA for data buffering and formatting
Data Network and transmission

- All data to shore (no trigger undersea)
- Data transport on optical fibers (data, slow control)
- Optical point-to-point connection to shore
- DWDM technique => minimize numbers of fibers

Star layout

Ring layout

Apostolos G. Tsirigotis, HEP 2011
Point source Sensitivity & Discovery potential
Full detector (308 DUs)

1 year of data taking – E^{-2} ν-spectrum

- KM3NeT sensitivity 90%CL
- KM3NeT discovery 5σ 50%
- IceCube sensitivity 90%CL
- IceCube discovery 5σ 50%
- 2.5÷3.5 above sensitivity flux. (extrapolation from IceCube 40 string configuration)

flux sensitivity and discovery flux (5σ, 50% probability) for point sources at $\delta=-60^\circ$ vs the assumed cut-off of the energy spectrum.

|Observed Galactic TeV-g sources (SNR, unidentified, microquazars)
★Galactic Center

Apostolos G. Tsirigotis, HEP 2011
Galactic Candidate ν Sources – SNRs

Origin of Cosmic Rays => SNR paradigm

Assuming that VHE γ emitters are CR accelerators.

As an example, assuming that the RXJ1713.7-39.46 (the most luminous γ ray source) is a hadron accelerator then the ν spectrum can be calculated from the γ spectrum:

\[
\Phi(E) = 16.8 \times 10^{-15} \left(\frac{E}{\text{TeV}} \right)^{-1.72} e^{-\sqrt{\frac{E}{2.1 \text{ TeV}}}} \text{ GeV}^{-1} \text{ s}^{-1} \text{ cm}^{-2}
\]

Significance of discovery of SNR RXJ1713

as a function of years of running time

>8 years required for a significant (>5σ) discovery

Apostolos G. Tsirigotis, HEP 2011
Extragalactic ν Sources – GRBs

- Alert from satellite detectors (known time & direction)
- Short time window (<2h) for GRB prompt neutrino emission
- High energy neutrinos (> 100TeV)
- Application of energy cut on the reconstructed muon energy

Detection of down-going GRB neutrinos events is feasible

The expected number of detected neutrino events from GRBs per year and steradian.

Expected Neutrino fluence from GRBs

- 1000 GRBs/year (4500m depth)
- 300 GRBs/year (3500m depth)
- Half KM3NeT

- 2.5 signal events/year
- 0.45 background events/year

Apostolos G. Tsirigotis, HEP 2011
Ultra high energy neutrinos from
- A multitude of objects such as Active Galactic Nuclei or GRBs
- The interaction of cosmic rays with intergalactic matter, radiation, cosmic microwave background

- No tight angular cut for reducing the background of atmospheric neutrinos
- Rely on a cut on the reconstructed muon energy.

KM3NeT (E^{-2}) diffuse ν flux sensitivity (effective energy cut $E_\nu > 500$ TeV)

$$3 \cdot 10^{-9} \text{ (GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1})$$

Diffuse flux sensitivity of the KM3NeT neutrino telescope for one year of observation time.

Apostolos G. Tsirigotis, HEP 2011
The expected neutrino flux for one bubble is
\[E^2 F_\nu \sim 4 \times 10^{-7} \text{ GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1} \]
Galactic Candidate ν Sources – Discovery Improvements

Use of the full experimental information on a track by track basis:
- reconstructed muon energy, and
- track resolution (muon reconstruction parameter errors)

Histogram: True
Line: Predicted from reconstruction errors

Signal (E^{-2} ν spectrum)
Background (atmo-ν)

Angle between reconstructed muon track and parent neutrino (Degrees)

10 TeV < $E\nu$ < 100 TeV
Galactic Candidate ν Sources – Discovery Improvements

154 DUs (half KM3NeT)

E^{-2} ν point source at -60° declination

Discovery Potential (3 sigma) vs Flux for one year of data taking

Improved method

Without energy information

Flux in units of 10^{-9} (GeV$^{-1}$ cm$^{-2}$ s$^{-1}$)

Without energy information: 1.6×10^{-9} (GeV$^{-1}$ cm$^{-2}$ s$^{-1}$)

Using full exp. information: 1.2×10^{-9} (GeV$^{-1}$ cm$^{-2}$ s$^{-1}$)

Binned technique: 2.5×10^{-9} (GeV$^{-1}$ cm$^{-2}$ s$^{-1}$)

RXJ1713.7-39.46 (0.6° angular radius)

1y Discovery potential WITH energy and shape
- 3σ: $3.0 \times$ RXJ1713 flux for 50% discovery
- 4σ: $4.1 \times$ RXJ1713 flux for 50% discovery
- 5σ: $5.6 \times$ RXJ1713 flux for 50% discovery

1y Discovery potential WITHOUT energy and shape
- 3σ: $3.7 \times$ RXJ1713 flux for 50% discovery
- 4σ: $4.6 \times$ RXJ1713 flux for 50% discovery
- 5σ: $7.2 \times$ RXJ1713 flux for 50% discovery

Apostolos G. Tsirigotis, HEP 2011
Conclusions

- KM3NeT will cover most of the sky with unprecedented sensitivity
- Promising Galactic Candidate neutrino Sources
- KM3NeT-Preparatory Phase ongoing Final design and prototyping activities in progress
- Discovery potential for Galactic Candidate neutrino Sources can be further improved using the reconstructed energy estimation, the angular resolution on a track by track basis and the application of advanced filters using the known source's direction

Acknowledgments
The KM3NeT project is supported by the EU in FP6 under Contract no. 011937 and in FP7 under Grant no. 212525

Apostolos G. Tsirigotis, HEP 2011