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INTRODUCTION

� Understanding the structure of infrared singularities in gauge theory 
amplitude has been a long standing issue.

� Recently, it has been shown that they can be mapped onto UV � Recently, it has been shown that they can be mapped onto UV 
divergences of n-jet operators in SCET.

� This means they can be described by means of an anomalous 
dimension, whose structure is constrained by:

� soft-collinear factorization,

� color conservation,

� non-abelian exponentiation,

(Becher,Neubert, 2009)

(Becher,Neubert, 2009; 

Gardi, Magnea 2009)

� A conjecture has been formulated, which has an extremely simple form
and it should hold to all order in perturbation theory. 

L. Vernazza, EPS HEP-2011

� non-abelian exponentiation,

� collinear limit.
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MOTIVATION

� Important phenomenological applications in higher order log 
resummation for n-jet processes.

� Interesting for the understanding of the deeper structure of QCD: the 
anomalous dimension predicts only pairwise interactions among 
different partons.

� It implies Casimir scaling of the cusp anomalous dimension, in contrast
with results obtained using the AdS/CFT correspondence in the strong-
coupling behavior.

This does not tell if and at which order a violation of the Casimir scaling � This does not tell if and at which order a violation of the Casimir scaling 
could arise in perturbation theory. A diagrammatic analysis excluded it 
up to 3 loop, and at 4 loops in terms with higher Casimir invariants. 

� Our aim is to complete the diagrammatic analysis at four loop. 
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(Becher, Neubert 2009; Gardi, Magnea 2009)



INFRARED DIVERGENCES OF GAUGE

THEORY AMPLITUDES

� Given a UV renormalized, on-shell n-parton scattering amplitude with IR
divergences regularized in                 dimensions, one obtains the finite 
remainder free from IR divergences from

µ µ−〉 = 〉

4 2d = − ε

� The multiplicative renormalization factor Z derives from an anomalous 
dimension :

� The anomalous dimension is conjectured to be very simple:
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� Semiclassical origin of IR singularities: completely determined by color 
charges and momenta of external partons; only color dipole 
correlations.
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(Becher, Neubert 2009; 
Gardi, Magnea 2009)



CONSTRAINT ON ΓΓΓΓ: SOFT-COLLINEAR

FACTORIZATION

� The conjecture is driven by the identification of on-shell amplitudes with 
Wilson coefficients of n-jet operators in SCET:

| ({ }, ) | ({ }, )n np pµ µ〉 = 〉M C

(Becher, Neubert 2009)

[on-shell spinors and polarization vectors]×

� Amplitudes of n-jet operators in SCET 
factorizes into

� A hard function which 
depends on large momentum 
transfer 

� n-jets depending on the collinear 

| nH = 〉C
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� n-jets depending on the collinear 
momenta of each collinear sector

� A soft function    depending on the 
soft scales 
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CONSTRAINT ON ΓΓΓΓ: SOFT-COLLINEAR

FACTORIZATION

� The identification                   allows to use properties of the soft-
collinear factorization to constrain   . First

� Then, invariance under the renormalization group assure that

|| n n〉 = 〉M C

Γ
= hΓ Γ

\� Then, invariance under the renormalization group assure that

� Soft-collinear factorization gives then

� Given that                                               with                  , one obtains

+=h c sΓ Γ
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(Becher, Neubert 2009; 
Gardi,Magnea 2009)
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CONSTRAINT ON ΓΓΓΓ: NON-ABELIAN

EXPONENTIATION

� The soft function is a matrix element of Wilson lines:

� The exponent     receives contributions only from Feynman diagrams 

�
1(0) (0)({ }, ) 0 | | 0 exp( ({ }, ))

n
n nµ µ= 〈 … 〉 =S SS S

�S� The exponent     receives contributions only from Feynman diagrams 
whose color weights are color-connected (“maximally non-abelian”)

� Color structures can be simplified using the Lie commutation relation:

� Use this to decompose color structures into a sum over products of 

�S

a bT T
b aT T

c cab
if T=−

− =

(Gatheral 1983; Frenkel and Taylor 1984)
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� Use this to decompose color structures into a sum over products of 
connected webs

� Only single connected webs contribute to the exponent    .�S 7

= +− −



CONSTRAINT ON ΓΓΓΓ: CONSISTENCY

WITH THE COLLINEAR LIMIT

� When two partons become collinear, an n-point amplitudes reduces to a 
(n-1)-parton amplitude times a splitting function:

(Berends, Giele 1989; Mangano, Parke 1991; Kosower
1999; Catani,De Florian, Rodrigo 2003)1999; Catani,De Florian, Rodrigo 2003)
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� must be independent of momenta and colors of partons 3,…n.

Sp 1 2 1 3({ , }, ) ({ , , }, ) ({ , , , }, ) |n np p p p P p pµ µ µ → += … − …
P 1 2T T TΓ Γ Γ

(Becher, Neubert 2009)

8SpΓ



DIAGRAMMATIC ANALYSIS: 

ONE, TWO AND THREE LOOPS

� One loop

� one leg:

� two legs:

2
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� Two loops

� Three loops

� Three new structures compatible with soft-

collinear factorization:

� and     are not compatible with collinear 
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� Two loops

� one leg:

� two legs:

� three legs:

� Incompatible with soft-

collinear factorization.

� and     are not compatible with collinear 

limit: the splitting function depends on 

colors and momenta of additional partons.

� An exception is                              , if it 

vanishes in all collinear limits. It is possible 

that such a function exists. 
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DIAGRAMMATIC ANALYSIS:

FOUR LOOPS I

� At four loops structures involving 

higher Casimir invariants appears:

� There are possible new structures 

compatible with soft-collinear 

factorization: 
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� Again, they are not compatible with 

the collinear limit, except                   

if it vanishes in all collinear limits. 10
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DIAGRAMMATIC ANALYSIS:

FOUR LOOPS II

� The two webs have color structure

( ) .adx bcy exy a b c d e

ijklm i j k l m
f f f +≡ T T T T TT

� There are two structures compatible with soft-collinear factorization: 

� The first function is incompatible with the collinear limit, the second 
function cannot be excluded, if it vanishes in all collinear limits.
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� Applied to the two-jet case, it means that the Casimir scaling of the 
cusp anomalous dimension is still preserved:
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CONCLUSION

� Infrared singularities in gauge theory amplitude can be 
mapped onto UV divergences of n-jet operators in SCET.

� They can be described by means of an anomalous � They can be described by means of an anomalous 
dimension, whose structure is constrained by soft-collinear 
factorization, non-abelian exponentiation, and two-parton
collinear limit.

� The anomalous dimension is expected to have a very simple 
structure. It should hold to all order in perturbation theory. 

� We have completed a diagrammatic analysis up to four loop, � We have completed a diagrammatic analysis up to four loop, 
showing that only new structures proportional to functions 
vanishing in all collinear limits can appear. 

� No violation of Casimir scaling of the cusp anomalous 
dimension arise.
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BACKUP

� The formal solution for Z up to four loops in perturbation theory reads
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