

Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Marco Bozzo – INFN Genova and University of Genova (Italy) on behalf of the TOTEM Collaboration

EPS HEP 2011 - Grenoble

Overview:

- The experiment and the detectors
- First observations with the inelastic telescopes
- Measurement of large-t pp elastic scattering (0.36-2.5 GeV²)
- A look at diffractive and DPE events with TOTEM

The TOTEM detector set-up

T1 and T2 in the forward region of CMS

T2 telescope 10 planes of GEM chambers Strips and pads

And with low intensity bunches of 10¹⁰ p (low pile-up)

dN/dŋ

EPS HEP 2011 - Grenoble

First data (T1)

- •Telescope installed in 2010-11 shutdown
- •So far short periods of data taking with low luminosity (L =
- 10²⁸ 10³⁰ cm⁻² s⁻¹) [March (2.76 TeV), May (7 TeV)]
- Detector working
- Data analysis in progress

Vertex reconstruction

Run 5531 Vertex All reconstructed tracks Entries 1738860 Entries 189714 Mean -0.02136 0.3712 Mean μ**N/d**η RMS 3.695 14000 14 RMS 3.885 12000 10000 10 Secondary interactions not removed 8000 6000 4000 2000 2 -20 -15 -10 -5 5 10 15 20 4 6 x (cm) Vertex reconstruction is affected by the CMS magnetic field.

η Distributions (uncorrected)

PP ELASTIC SCATTERING

t-range: 0.36 – 2.5 GeV²

The Roman Pot Unit

2010 Runs

- Topology
 - near and far units
 - diagonals
- Low $|\xi|$ selection (3 σ)
 - |x_{RP,45}|<3σ_x @ L_{x,45}=0
 - |x_{RP,56}|<3σ_x @ L_{x,56}=0
 - corr. $y_{\text{RP216,45}} \leftrightarrow y_{\text{RP220,45}}$
 - corr. $y_{\text{RP216,56}} \leftrightarrow y_{\text{RP220,56}}$
- Elastic colinearity (3σ)
 - $\theta_{x,45}^{*} \leftrightarrow \theta_{x,56}^{*}$
 - $\theta_{\gamma,45}^{*} \leftrightarrow \theta_{\gamma,56}^{*}$

Only RPs @ 220 moved 'close' to the beams - vertical RPs @ 7σ ~ 3 mm from circulating beams - low pile-up

Integrated luminosity : 6.2 nbarn⁻¹

Total triggers	5.28M
Reconstructed tracks & elastic topology	293k
Low ξ selection	70.2k
Collinearity cuts	66.0k

Diagonals analysed independently

Both angle projections reconstructed: Θ_{x}^{*} and Θ_{v}^{*}

Proton reconstruction

- Θ_x^* from $\Theta_x \otimes \mathbb{RP}_{220}$ (through dL_x/ds)
- Θ_y^* from y @ RP220 (through L_y)

Excellent beam optics understanding

- Magnet currents measured
- Measurements of actual beam optics parameters with elastic scattering
 - $\Theta_{\text{left}}^* = \Theta_{\text{right}}^*$ (proton pair colinearity)
 - Proton position \leftrightarrow angle correlations
 - L_x=0 determination, coupling corrections

→ Fine geometric alignment

- Alignment between pots with overlapping tracks (\sim 1 μ m)
- Alignment with respect to the beam scraping exercise (~ 20μ m)
- Mechanical constraints between top and bottom pots (~10 μ m)

 $\Theta_x = dL_x/ds \Theta_x^*$

0.55 🖏

0.50

0.45 0.40

0.35

0.30 0.25

0.20

0.15

0.10

0.05

_____0.0 250

150.

100. s (m) 200.

 $y = L_v \Theta_v^*$

□₊₊₽ŧ∭₩

50

800.

600.

500.

400.

300.

200.

100.

0.0

<u>ග</u> 700

Track based alignment

package of 10 detectors

EPS HEP 2011 - Grenoble

Elastic colinearity cuts

Data outside the 3σ cuts used for background estimation

t_v-acceptance corrections

<i>φ-acceptance correction

Determine inefficiency in detection of pp

• Efficiency correction t-independent = 1.18 - 1.19

0.2

0.22 0.24 0.26 0.28

0.3

0.32 0.34 Θ, [rad]

>>> breakdown of triggers : ~90% on background (showers) ; ~5% cut by RP acceptance ; ~5% pp pairs

Background and resolution determination

Signal vs. background (t)

```
|+|=0.4GeV<sup>2</sup>: B/S = (11±2)%
|+|=0.5GeV<sup>2</sup>: B/S = (19±3)%
|+|=1.5GeV<sup>2</sup>: B/S = (0.8±0.3)%
```

Differential pp cross-section

Statistical and Systematic uncertainties for the *t* and d\sigma/dt results

	$\frac{\delta t}{t}$ on single t meas.	$\delta t = \delta t^{\text{stat}}(t) \oplus \delta_t^{\text{syst}}(t)$	$\delta(\mathrm{d}\sigma/\mathrm{d}t) = \delta _{\mathrm{d}\delta/\mathrm{d}t}^{\mathrm{stat}}(t) \oplus \delta_{\mathrm{d}\sigma/\mathrm{d}t}^{\mathrm{syst}}(t)$
$ t = 0.4 \mathrm{GeV}^2$	13~% (from beam div.)	$\frac{\delta t}{t} = \pm 0.5\%^{\text{stat}} \pm 2.6\%^{\text{syst}}$	$\frac{\delta(\mathrm{d}\sigma/\mathrm{d}t)}{\mathrm{d}\sigma/\mathrm{d}t} = \pm 2.6\%^{\mathrm{stat}} \stackrel{+25}{_{-37}}\%^{\mathrm{syst}}$
$ t = 0.5 \mathrm{GeV}^2$	12~% (from beam div.)	$\frac{\delta t}{t} = \pm 0.7\%^{\text{stat}} \pm 2.5\%^{\text{syst}}$	$\frac{\delta(\mathrm{d}\sigma/\mathrm{d}t)}{\mathrm{d}\sigma/\mathrm{d}t} = \pm 4.4\%^{\mathrm{stat}} \stackrel{+28}{_{-39}} \%^{\mathrm{syst}}$
$ t = 1.5 \mathrm{GeV}^2$	7~% (from beam div.)	$\frac{\delta t}{t} = \pm 0.8\%^{\text{stat}} \pm 2.3\%^{\text{syst}}$	$\frac{\delta(\mathrm{d}\sigma/\mathrm{d}t)}{\mathrm{d}\sigma/\mathrm{d}t} = \pm 8.2\%^{\mathrm{stat}} \begin{array}{c} +27\\ -30 \end{array}\%^{\mathrm{syst}}$

pp Elastic Scattering - ISR to Tevatron

proton-antiproton 10 d σ /dt [mb / GeV²] 10 ~ 1.7 GeV² 10⁻³ ¹ 31 GeV x1 10-5 53 GeV x10⁻² 10⁷ 62 GeV 10⁻⁹ x10 546 GeV 10⁻¹¹ x10⁻⁶ 10⁻¹³ 30 GeV x10⁻⁸ 0.7 GeV² 10⁻¹⁵, 1800 GeV $x10^{-10}$ 10⁻¹⁷ 0.5 1.5 2.5 2 3 3.5

Diffractive minimum: analogous to Fraunhofer diffraction: |t|~p² q²

Marco Bozzo -

- exponential slope B at low |t| increases
- minimum moves to lower |t| with increasing s
- \rightarrow interaction region grows (as also seen from s_{tot})
- depth of minimum changes
 → shape of proton profile changes
- depth of minimum differs between pp, p⁻p
 → different mix of processes

|t| [GeV²]

Comparison with models

DIFFRACTIVE EVENTS

Marco Bozzo -

Single diffraction low ξ

Correlation between leading proton and forward detector T2

run: 37280003, event: 3000

EPS HEP 2011 - Grenoble

Single diffraction large ξ

correlation between leading proton and forward detector T2

EPS HEP 2011 - Grenoble

Double Pomeron Exchange (DPE)

USE the LHC as a Pomeron-Pomeron (Gluon - Gluon) Collider

Double Pomeron Exchange

correlation between leading proton and forward detector T2

Marco Bozzo -

First attempt at DPE Mass Reconstruction

Summary

The TOTEM detector is fully installed and has started to produce Physics results

- Measurement of elastic scattering for t between .36 and 2.5 GeV2
 - the dip in proton proton has been clearly observed, data have been published
- Measurement of total cross section
 - T2 telescope: preliminary distribution dN/d η
 - T1 telescope: ready to do physics
- The potentiality of the combined system of RP and inelastic telescopes to observe and measure Single diffractive and Double Pomeron Exchange events has been demonstrated.

Thank you for your attention

Our data are now published in **EPL**, 95 (2011) 41001

