A measurement of the inclusive W^{\pm} and Z/γ^{*} cross sections in the e and μ decay channels in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

 $\label{eq:main_optimal_model} \begin{array}{l} \textbf{M. Bellomo} \mbox{ (CERN)} \\ \text{on behalf of the ATLAS Collaboration} \end{array}$

Grenoble, July, 21-27 (2011)

International Europhysics Conference on High Energy Physics

- Introduction
- Inclusive W and Z production in electron and muon channels
- Total and Fiducial¹ cross sections
- Cross-section ratios
- Rapidity Differential measurements
- W Charge Asymmetry
- Summary & Outlook

Results are based on the 2010 dataset – $\mathcal{L} \sim 35 \ pb^{-1}$ ($\delta \mathcal{L} = 3.4\%$)

¹The "fiducial" cross section is defined within detector acceptance

The ATLAS Detector

- EM calorimeter and tracking up to $|\eta| < 2.5 \Rightarrow$ electrons
- Muon spectrometer up to $|\eta| < 2.7$, trigger coverage to $|\eta| < 2.4 \Rightarrow$ muons
- Calorimetric coverage up to $|\eta| < 4.9 \Rightarrow$ jets, $E_{\mathrm{T}}^{\mathrm{miss}}$, forward electrons

W and Z production at LHC

- Drell-Yan production of W and Z bosons calculable to high orders in pQCD
- An interesting testing ground of PDFs and their evolution to high Q^2 scale

- Inclusive W and Z production with $Q^2 \sim M_{W/Z}^2$ and $10^{-3} < \bar{x} < 10^{-1}$
- Need most accurate theory predictions to match experimental precision, e.g. σ_{tot} calculated with FEWZ using MSTW08 (NNLO):

 $\sigma(W^+ \to \ell^+ \nu) = 6.16 \ nb, \ \sigma(W^- \to \ell^- \bar{\nu}) = 4.30 \ nb, \ \sigma(Z \to \ell \ell) = 0.96 \ nb$

• Error estimate from PDF at $90\,\%\,{\rm CL},\,\alpha_s$ and scale uncertainties is $\sim5\,\%;$ only considering PDF at $68\,\%\,{\rm CL}$ gives $\sim2\,\%$

$W \rightarrow \ell \nu$ selection

- Single lepton triggers with high efficiency
- $p_{T,l} > 20 \, GeV$ $|\eta_e| < 2.47, |\eta_{\mu}| < 2.4$ (elec. excl. calo crack) isolated leptons $E_{T}^{miss} > 25 \, GeV$ $m_T > 40 \, GeV$
- QCD from data fitting $E_{\rm T}^{\rm miss}$ (e) and studying control regions in $iso E_{\rm T}^{\rm miss}$ plane (μ)
- 131 140 K candidates with 7 - 9 % background

$Z \rightarrow \ell \ell$ selection

- Single lepton triggers with high efficiency
- $p_{T,l} > 20 \, GeV$ $|\eta_e| < 2.47, |\eta_\mu| < 2.4$ (elec. excl. calo crack) isolated leptons opposite charge $66 < m_{\ell\ell} < 116 \, GeV$
- QCD from data fitting $m_{\ell\ell}$ lineshape and studying control regions in $(iso, m_{\ell\ell})$
- $\sim 10 12 K$ candidates with 1 - 2 % background

Electron and muon systematics uncertainties

- $\delta \sigma_{W \to e\nu}$ of 1.8 2.1%, dominated by electron reconstruction, identification and $E_{\rm T}^{\rm miss}$
- $\delta\sigma_{Z \to ee}$ of 2.7%, dominated by el. reconstruction and identification

Electron channels (%)	W^{\pm}	W^+	W^{-}	Z	
Trigger	0.4	0.4	0.4	<0.1	
Reconstruction	0.8	0.8	0.8	1.6	
Identification	0.9	0.8	1.1	1.8	
Isolation	0.3	0.3	0.3	_	
Energy scale and resolution	0.5	0.5	0.5	0.2	
Defective LAr channels	0.4	0.4	0.4	0.8	
Charge misidentification	<0.1	0.1	0.1	0.6	
E_{T}^{miss}	0.8	0.7	1.0	_	
Pile-up	0.3	0.3	0.3	0.3	
Vertex position	0.1	0.1	0.1	0.1	
QCD Background	0.4	0.4	0.4	0.7	
$EWK + t\bar{t}$ Background	0.2	0.2	0.2	<0.1	
$C_{W/Z}$ Theor. uncertainty	0.6	0.6	0.6	0.3	
Total Exp. uncertainty	1.8	1.8	2.0	2.7	
$A_{W/Z}$ Theor. uncertainty	1.4	1.6	1.9	1.9	
Total excluding Luminosity	2.3	2.4	2.8	3.3	

- $\delta \sigma_{W \to \mu \nu}$ of 1.6 1.7%, dominated by muon efficiencies, QCD background and $E_{\rm T}^{\rm miss}$
- $\delta\sigma_{Z \to \mu\mu}$ of 0.9%, dominated by muon efficiencies

Muon channels (%)	W^{\pm}	W^+	W^{-}	Z
Trigger	0.5	0.5	0.5	0.1
Reconstruction	0.4	0.3	0.3	0.6
Isolation	0.2	0.1	0.2	0.3
p_{T} Resolution	0.04	0.03	0.05	0.02
p_{T} Scale	0.4	0.6	0.6	0.2
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.5	0.4	0.6	-
Pile-up	0.3	0.3	0.3	0.3
Vertex position	0.1	0.1	0.1	0.1
QCD Background	0.6	0.5	0.8	0.3
$EWK + t\bar{t}$ Background	0.4	0.3	0.4	0.02
$C_{W/Z}$ Theor. uncertainty	0.8	0.8	0.7	0.3
Total Exp. uncertainty	1.6	1.7	1.7	0.9
$A_{W/Z}$ Theor. uncertainty	1.4	1.6	2.0	2.0
Total excluding Luminosity	2.1	2.3	2.6	2.2

M. Bellomo (CERN)

$W \rightarrow \ell \nu$ and $Z \rightarrow \ell \ell$ integrated cross sections

• Fiducial cross section corrected for efficiency factor $(C_{W/Z})$, adjusted to data/MC differences

$$\sigma_{fid} = \frac{N - B}{C_{W/Z} \cdot L_{int}}, \quad \sigma_{tot} = \frac{\sigma_{fid}}{A_{W/Z}}$$

- Total cross section corrected for acceptance $(A_{W/Z} \sim 0.45 0.50)$ based on Mc@NLO and CTEQ 6.6 NLO PDF set
- Theoretical uncert. on A_{W/Z} from error-set, PDF sets, MC@NLO-POWHEG and PYTHIA-HERWIG comparisons (δA_W[±] ~ 1.5%, δA_Z ~ 2.0%)

$\sigma_W^{fid} \cdot BR(W \to l\nu)$	$5.123 \pm 0.011(\text{sta}) \pm 0.064(\text{sys}) \pm 0.174(\text{lum}) \pm 0.005(\text{acc}) \text{ [nb]}$
$\sigma^{fid}_{W^+} \cdot BR(W \to l\nu)$	$3.108 \pm 0.008(\text{sta}) \pm 0.038(\text{sys}) \pm 0.106(\text{lum}) \pm 0.004(\text{acc}) \text{ [nb]}$
$\sigma_{W^-}^{fid} \cdot BR(W \to l\nu)$	$2.016 \pm 0.007(\text{sta}) \pm 0.028(\text{sys}) \pm 0.069(\text{lum}) \pm 0.002(\text{acc}) \text{ [nb]}$
$\sigma_{Z/\gamma^*}^{fid} \cdot BR(Z/\gamma^* \to ll)$	$0.479 \pm 0.003(\text{sta}) \pm 0.005(\text{sys}) \pm 0.016(\text{lum}) \pm 0.001(\text{acc}) \text{ [nb]}$
$\sigma^{tot}_W \cdot BR(W \to l\nu)$	10.197 ± 0.021 (sta) ± 0.127 (sys) ± 0.347 (lum) ± 0.165 (acc) [nb]
$\sigma^{tot}_{W^+} \cdot BR(W \to l\nu)$	$6.041 \pm 0.016(\text{sta}) \pm 0.077(\text{sys}) \pm 0.205(\text{lum}) \pm 0.096(\text{acc}) \text{ [nb]}$
$\sigma^{tot}_{W^-} \cdot BR(W \to l\nu)$	$4.156 \pm 0.014(\text{sta}) \pm 0.058(\text{sys}) \pm 0.141(\text{lum}) \pm 0.083(\text{acc}) \text{ [nb]}$
$\sigma^{tot}_{Z/\gamma^*} \cdot BR(Z/\gamma^* \to ll)$	$0.937 \pm 0.006(\text{sta}) \pm 0.009(\text{sys}) \pm 0.032(\text{lum}) \pm 0.016(\text{acc}) \text{ [nb]}$

Theory comparisons - total cross sections

- Overall remarkable agreement with NNLO PDF predictions
- A few differences between different PDFs (w/ only 68% CL PDF errors)
- Comparing total cross sections, the acceptance uncertainty accounts for effect of different PDFs on the unmeasured phase space ...

Theory comparisons - fiducial cross sections

- ... comparing in the fiducial region disentangles theor. and exp. effects
- This enables more interesting comparisons among different PDF sets
- First dedicated calculation of NNLO predictions based on FEWZ and DYNNLO with experimental cuts

Theory comparisons - total cross section ratios

- W^{\pm}/Z , W^{+}/W^{-} ratios profit from exp. and theor. systematics cancellation
- W^{\pm}/Z ratio measured with total uncert. of 1.5 %, W^{+}/W^{-} with 1.7 %

Theory comparisons - lepton universality

• New measurements of the ratios of the e and μ branching fractions

$$R_W = \frac{\sigma_W^e}{\sigma_W^\mu} = \frac{Br(W \to e\nu)}{Br(W \to \mu\nu)} = 1.006 \pm 0.004 \text{ (sta)} \pm 0.006 \text{ (unc)} \pm 0.023 \text{ (cor)} = 1.006 \pm 0.024$$
$$R_Z = \frac{\sigma_Z^e}{\sigma_Z^\mu} = \frac{Br(Z \to ee)}{Br(Z \to \mu\mu)} = 1.018 \pm 0.014 \text{ (sta)} \pm 0.016 \text{ (unc)} \pm 0.028 \text{ (cor)} = 1.018 \pm 0.031$$

- Inserting R_Z PDG value into the present measurement for a combined cross section analysis
- \Rightarrow reduction of correlated R_W systematic uncertainty
- ⇒ improved result of $R_W = 0.999 \pm 0.021.$

W and Z differential cross sections

- Differential $\sigma_{W^{\pm}}$ and σ_{Z} measured vs. lepton η and boson rapidity
- Electron and muon measurements combined together with full covariance (meas., bins, channels) matrix available ($\chi^2/ndf = 33.9/29$)
- Z rapidity coverage up to |y| = 3.5 including the forward $Z \rightarrow ee$ measurement
- Accuracy of ~ 2 % in central y_Z and W meas, of 6(10) % at y_Z = 2.6(3.2)

Combined e-mu $d\sigma_Z/dy_Z$ vs PDF predictions to NNLO

- \bullet Overall broadly described by predictions of NNLO PDF sets considered
- Measurements can impact on PDF central values and uncertainties

Combined e-mu $d\sigma_{W^{\pm}}/d\eta_l$ vs PDF predictions to NNLO

- Overall broadly described by predictions of NNLO PDF sets considered
- Measurements can impact on PDF central values and uncertainties

W differential charge asymmetry

- W differential charge asymmetry : $A(\eta_l) = \frac{\sigma^{W^+}(\eta_l) \sigma^{W^-}(\eta_l)}{\sigma^{W^+}(\eta_l) + \sigma^{W^-}(\eta_l)}$
- Update of recent ATLAS muon measurement combining electron and muon channels together

- W and Z inclusive cross section in electron and muon channels measured with complete 2010 dataset
- Total and fiducial integrated cross sections presented with 1 2% level experimental precision (apart from the 3.4% luminosity uncertainty)
- First rapidity differential cross sections are measured in electron and muon channels and combined with accuracy of ~ 2% for bulk of measurement bins (central y_Z and all W) and of 6 10% for forward Z region
 ⇒ Full systematics covariance matrices available for PDF fitters
- Lepton W charge asymmetry updated with improved precision
- Integrated fiducial and rapidity differential cross sections allow for interesting comparison to theory and will impact proton PDF determinations

Outlook

- A publication presenting 2010 analysis results is going to be released soon
- Preview of W, Z inclusive analysis with 2011 data

- Very nice data/MC agreement already achieved!
- 3.1 4.3 M W boson and 260 330 K Z boson samples in $e \mu$ channels
- LHC W-Z boson factory \Rightarrow high precision differential measurements enabled!