Search for long-lived massive particles at CMS

Jie Chen
Florida State University
for the CMS Collaboration
Outline

• Introduction

• Searches for Heavy Stable Charged Particles at CMS
 ▪ stopped gluino/stop
 ▪ slowly moving gluino/stop/stau

• Conclusions
Introduction
Long-lived massive particle

Long-lived Massive Particles: charged or neutral
- \simcm < $c\tau$ < detector scale: non-prompt decay inside detector
- $c\tau$ > detector scale: decay outside detector or readout time window. If charged \rightarrow Heavy Stable Charged Particle (HSCP)

HSCP Production Mechanism:
- Pair production
- Cascade decay
• Lepton-like HSCP
 - GMSB stau
• R-hadron (strongly produced HSCPs hadronize with SM gluon/quarks)
 - Split Supersymmetry \rightarrow gluino (hadronize to gluinoball, R-meson, R-baryon)
 - Baryogenesis motivated Minimal Supersymmetric Standard Model \rightarrow stop
HSCP interactions in detector

Longer time of flight
- Non-relativistic \(\beta < 1 \)

Higher energy loss inside detector
- Lepton-like HSCPs behave like (heavy) muons with large ionization energy loss
- R-Hadron, also has hadronic interactions
 - Few GeV per interaction \(\rightarrow \) no showering in calorimeters
 - heavy parton acts as spectator, conversion to a different R-hadron species possible

Average R-hadron energy loss per hadronic interaction
HSCP detection

HSCPs can possibly stop inside ($\beta<0.3$) or slowly escape ($0.4<\beta<0.9$) detector

Stopped HSCP: look for energetic hadronic jet from HSCPs decaying when beam off or during beams collisions intervals

Slowly moving HSCP: measure β from delayed time of flight (T.O.F) and tracker dE/dx (ionization energy loss per path length)

- Can measure mass from $p/(\beta \gamma c)$

Two searches are complimentary and can confirm each other
Stopped HSCP Search
Stopped HSCP

Data Samples:
- 168 hours of trigger live-time LHC fills, peak luminosity up to 10^{33} cm$^{-2}$ s$^{-1}$
- 2010 data with peak luminosity of $10^{28} \sim 10^{32}$ cm$^{-2}$ s$^{-1}$, as background control sample

Selection:
- dedicated 50 GeV jet trigger with no signals from beam position and timing (BPTX) monitors in a window of ±1 Bunch Crossing (BX)
- 70 GeV jet energy requirement, beam-related, cosmic and instrumental background rejection
Stopped HSCP

Counting experiment and time-profile analysis are performed

<table>
<thead>
<tr>
<th>Lifetime</th>
<th>(L_{\text{eff}}(pb^{-1}))</th>
<th>Expected Bg</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 ns</td>
<td>4.3</td>
<td>0.11 ± 0.05</td>
<td>0</td>
</tr>
<tr>
<td>100 ns</td>
<td>12.5</td>
<td>0.35 ± 0.14</td>
<td>0</td>
</tr>
<tr>
<td>1 (\mu s)</td>
<td>139</td>
<td>3.3 ± 1.3</td>
<td>4</td>
</tr>
<tr>
<td>10 (\mu s)</td>
<td>352</td>
<td>10.1 ± 4.1</td>
<td>9</td>
</tr>
<tr>
<td>30 (\mu s \times 10^3) s</td>
<td>360</td>
<td>10.4 ± 4.2</td>
<td>10</td>
</tr>
<tr>
<td>10^4 s</td>
<td>268</td>
<td>10.4 ± 4.2</td>
<td>10</td>
</tr>
<tr>
<td>10^5 s</td>
<td>65</td>
<td>10.4 ± 4.2</td>
<td>10</td>
</tr>
<tr>
<td>10^6 s</td>
<td>7.5</td>
<td>10.4 ± 4.2</td>
<td>10</td>
</tr>
</tbody>
</table>

1 LHC Fill

Counting Exp.
Stopped HSCP

- Gluino
 - $M_{\text{gluino}} - M_{\text{neutralino}} > 100$ GeV, $\text{Br}(\text{gluino} \rightarrow g + \text{neutralino}) = 100\%$, $m_{\text{gluino}} < 601$ GeV are excluded @95% C.L. for lifetimes from 10 μs to 1000 s

- Stop ← NEW Addition
 - For $M_{\text{stop}} - M_{\text{neutralino}} > 200$ GeV, $\text{Br}(\text{stop} \rightarrow \text{top} + \text{neutralino}) = 100\%$, $m_{\text{stop}} < 337$ GeV are excluded @95% C.L. for lifetimes from 10 μs to 1000 s

- Substantially extends our previous gluino limit (PRL 106 (2011) 011801) of 370 GeV

- 95% C.L. limits are also set for cross-section X BR X stopping efficiency to be interaction model independent
Slowly Moving HSCPs
Slowly Moving HSCP

1091 pb\(^{-1}\) data used with Muon and MET trigger
- Two analysis methods
 ✓ Tracker-only (discriminator \(I_{as}\) from tracker \(dE/dx\) measurement)
 ✓ Tracker+TOF (\(\beta^{-1}\) measurement from muon system in addition)
- Look for enhancement in high \(I_{as}\), high \(\beta^{-1}\) and high \(p_T\) region.
Slowly Moving HSCP

- Data-driven way to estimate background, utilizing the non-correlation between I_{as} and β^{-1} and p_T
- Mass prediction made from pseudo-exp, using p, I_h, and β^{-1} PDF obtained from non-signal region
- Counting experiment in mass window $[M_{reco} - 2\sigma_{M_{reco}}, \ 2 \ TeV]$ is performed with optimized I_{as}, β^{-1} and p_T selection to get the best expected limit for each model mass point considered
Slowly Moving HSCP

95% C.L. mass limits are set for
- Cloud model interaction scenario
 - Gluino (10% \simgg): 899 GeV, Gluino (50% \simgg): 839 GeV
 - Stop: 620 GeV GMSB Stau: 293 GeV ← NEW Addition
- Charge suppression interaction scenario
 - Gluino (10% \simgg): 808 GeV, Stop: 515 GeV

Significant improvement over our previous gluino limit (JHEP 03 (2011) 024) of 311 GeV
Summary

• With ~1 fb\(^{-1}\) integrated luminosity, CMS searched both stopped and slow moving HSCPs
 – No significant excess observed
• 95% C.L. mass limits are set on
 – Gluino: 601 GeV, Stop: 337 GeV (stopped HSCP analysis)
 – Gluino: 899 GeV, Stop: 620 GeV, GMSB Stau: 293 GeV
 (slowly moving HSCP analysis)
 – Significant improvement over our 2010 data limits
• Results shown will be available
 https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

Stay tuned for more exciting exotica searches
Back Up