



1

# Search for long-lived massive particles at CMS

#### Jie Chen Florida State University for the CMS Collaboration







- Introduction
- Searches for Heavy Stable Charged Particles at CMS
  - stopped gluino/stop
  - slowly moving gluino/stop/stau
- Conclusions





#### Introduction

## Long-lived massive particle



Long-lived Massive Particles: charged or neutral

- $\sim cm < c\tau < detector scale: non-prompt decay inside detector$
- cτ > detector scale: decay outside detector or readout time window. If charged → Heavy Stable Charged Particle (HSCP)

HSCP Production Mechanism:

- Pair production
- Cascade decay
- Lepton-like HSCP
  - GMSB stau



- R-hadron (strongly produced HSCPs hadronize with SM gluon/quarks)
  - Split Supersymmetry → gluino (hadronize to gluinoball, R-meson, Rbaryon)
  - Baryogenesis motivated Minimal Supersymmetric Standard Model → stop



Longer time of flight

Non-relativistic  $\rightarrow \beta < 1$ 

Higher energy loss inside detector

- Lepton-like HSCPs behave like (heavy) muons with large ionization energy loss
- R-Hadron, also has hadronic interactions
  - Few GeV per interaction → no showering in calorimeters
  - heavy parton acts as spectator, conversion to a different R-hadron species possible
  - Cloud model: most R-hadrons end up charged after several interactions. Eur. Phys. J. C50 (2007) 353
  - Neutral R-baryon interaction model: all Rbaryons become neutral after a typical calorimeter. Eur. Phys. J. C66 (2010) 493









HSCPs can possibly stop inside (β<0.3) or slowly escape (0.4<β<0.9) detector</li>
Stopped HSCP: look for energetic hadronic jet from HSCPs decaying when beam off or during beams collisions intervals
Slowly moving HSCP: measure β from delayed time of flight (T.O.F) and tracker dE/dx (ionization energy loss per path length)

– Can measure mass from  $p/(\beta \gamma c)$ 



Two searches are complimentary and can confirm each other







## Stopped HSCP Search







#### Data Samples:

- 168 hours of trigger live-time LHC fills, peak luminosity up to 10<sup>33</sup> cm<sup>-2</sup> s<sup>-1</sup>
- 2010 data with peak luminosity of 10<sup>28</sup>~10<sup>32</sup> cm<sup>-2</sup> s<sup>-1</sup>, as background control sample

Selection:

- dedicated 50 GeV jet trigger with no signals from beam position and timing (BPTX) monitors in a window of ±1 Bunch Crossing (BX)
- 70 GeV jet energy requirement, beam-related, cosmic and instrumental background rejection





#### Stopped HSCP







#### Stopped HSCP



- Gluino
  - M<sub>gluino</sub> M<sub>neutralino</sub> > 100 GeV, Br(gluino
     → g + neutralino) =100%, m<sub>gluino</sub> < 601</li>
     GeV are excluded @95% C.L. for
     lifetimes from 10 μs to 1000 s
- Stop ← NEW Addition
  - For  $M_{stop}$   $M_{neutralino} > 200 \text{ GeV}$ , Br(stop  $\rightarrow$  top + neutralino) =100%,  $m_{stop} < 337 \text{ GeV}$  are excluded @95% C.L. for lifetimes from 10 µs to 1000 s
- Substantially extends our previous gluino limit (PRL 106 (2011) 011801) of 370 GeV
- 95% C.L. limits are also set for crosssection X BR X stopping efficiency to be interaction model independent







## Slowly Moving HSCPs





### Slowly Moving HSCP

- 1091 pb<sup>-1</sup> data used with Muon and MET trigger
  - Two analysis methods
    - $\checkmark$  Tracker-only (discriminator I<sub>as</sub> from tracker dE/dx measument)
    - ✓ Tracker+TOF ( $\beta^{-1}$  measurement from muon system in addition)
  - Look for enhancement in high  $I_{as},$  high  $\beta^{\text{-1}}$  and high  $p_{\text{T}}$  region.







### Slowly Moving HSCP

- Data-driven way to estimate background, utilizing the non-correlation between  $I_{as},$  and  $\beta^{\text{-1}}$  and  $p_{\text{T}}$
- Mass prediction made from pseudo-exp, using p,  $I_h$ , and  $\beta^{-1}$  PDF obtained from non-signal region
- Counting experiment in mass window [ $M_{reco}$   $2\sigma_{Mreco}$ , 2 TeV] is performed with optimized  $I_{as}$ ,  $\beta^{-1}$  and  $p_T$  selection to get the best expected limit for each model mass point considered







#### Slowly Moving HSCP

95% C.L. mass limits are set for

- Cloud model interaction scenario
  - Gluino (10% ~gg): 899 GeV, Gluino (50% ~gg): 839 GeV
  - Stop: 620 GeV GMSB Stau:293 GeV ← NEW Addition
- Charge suppression interaction scenario
  - Ğluino(10% ~gg): 808 GeV, Stop: 515 GeV











- With ~1 fb<sup>-1</sup> integrated luminosity, CMS searched both stopped and slow moving HSCPs
  - No significant excess observed
- 95% C.L. mass limits are set on
  - Gluino: 601 GeV, Stop: 337 GeV (stopped HSCP analysis)
  - Gluino: 899 GeV, Stop: 620 GeV, GMSB Stau: 293 GeV (slowly moving HSCP analysis)
  - Significant improvement over our 2010 data limits
- Results shown will be available
   <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO</u>

#### Stay tuned for more exciting exotica searches





