Search for Non-Resonant New Phenomena with the CMS Experiment

International Europhysics Conference on High Energy Physics 20-27 July 2011, Grenoble

The CMS Detector

3.8T Superconducting Solenoid

Lead tungstate E/M Calorimeter (ECAL)

Hermetic (|η|<5.2) Hadron Calorimeter (HCAL) [scintillators & brass]

All Silicon Tracker (Pixels and Microstrips)

Redundant Muon System (RPCs, Drift Tubes, Cathode Strip Chambers)

Highlights from 2010 analyses

Search for Pair Production of First-Generation Scalar Leptoquarks Using Events Containing Two Electrons And Two Jets Produced in pp Collisions at $\sqrt{s} = 7$ TeV					
	[Phys. Rev. Lett. 106, 201802 (2011)			
Search for Pair Production of Second	l-Gene	ration Scalar Leptoquarks in pp			
Collisions at √s = 7 TeV		Phys. Rev. Lett. 106, 201803 (2011)			
Search for First Generation Scalar Leptoquarks in the evjj Chann					
	arXiv:1105.5237, submitted to Phys.Lett.B				

Search for Pair Production of First-Gen Containing Two Electrons And Two Jet	neration Scalar Leptoquarks Using Events ts Produced in pp Collisions at √s = 7 TeV				
	Phys. Rev. Lett. 106, 201802 (2011)				
Search for Pair Production of Second	d-Generation Scalar Leptoquarks in pp				
Collisions at $\sqrt{s} = 7$ LeV	Phys. Rev. Lett. 106, 201803 (2011)				
Search for First Generation Scalar Leptoquarks in the evjj Channel in pp					
	arXiv:1105.5237, submitted to Phys.Lett.B				
Search for Large Extra Dimensions in Dimuon Events in pp					
Collisions at sqn(s) = 7 Tev	Physics Analysis Summary EXO-10-020				
Search for Large Extra Dimensions in the Diphoton					
	arXiv:1103.4279, accepted by JHEP				

Search for Pair Production of First-Gen Containing Two Electrons And Two Jet	eration Scalar Leptoquarks Using Events is Produced in pp Collisions at $\sqrt{s} = 7$ TeV			
	Phys. Rev. Lett. 106, 201802 (2011)			
Search for Pair Production of Second	I-Generation Scalar Leptoquarks in pp			
Collisions at $\sqrt{s} = 7$ TeV	Phys. Rev. Lett. 106, 201803 (2011)			
Search for First Generation Scalar Collisions at $\sqrt{s} = 7$ TeV	Leptoquarks in the evjj Channel in pp			
	arXiv:1105.5237, submitted to Phys.Lett.B			
Search for Large Extra Dimension	is in Dimuon Events in pp			
Comsions at sqrt(s) = 7 Tev	Physics Analysis Summary EXO-10-020			
Search for Large Extra Dimension	s in the Diphoton			
That Otato at the Eargo Haaron O	arXiv:1103.4279, accepted by JHEP			
Search for New Physics in Highly E Dimuons in pp Collisions at sqrt(s)	Boosted Z0 Decays to)=7 TeV			
	Physics Analysis Summary EXO-10-025			
Model Unspecific Search for New F	Physics in pp			
Collisions at sqrt(s) = 7 TeV	Physics Analysis Summary EXO-10-021			

Search for Pair Production of First-Generation Scalar Leptoquarks Using Events Containing Two Electrons And Two Jets Produced in pp Collisions at $\sqrt{s} = 7$ TeV Phys. Rev. Lett. 106, 201802 (2011) Search for Pair Production of Second-Generation Scalar Leptoquarks in pp Collisions at $\sqrt{s} = 7 \text{ TeV}$ Phys. Rev. Lett. 106, 201803 (2011) Seare Concration Scalar Lontoquarks in the ovii Channel in no <u>• 2010 analyses made public before EPS 2011</u> • No evidence for New Physics https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO Search for Large Extra Dimensions in the Diphoton Final State at the Large Hadron Collider arXiv:1103.4279, accepted by JHEP Search for New Physics in Highly Boosted Z0 Decays to Dimuons in pp Collisions at sqrt(s)=7 TeV Physics Analysis Summary EXO-10-025

Model Unspecific Search for New Physics in pp Collisions at sqrt(s) = 7 TeV

Physics Analysis Summary EXO-10-021

W' searches with 2011 data

- Many beyond-the-SM theories predict new vector bosons: *W*' and *Z*'
 - GUT, SUSY, ED, Little Higgs, Technicolor, etc
 - "Natural" new particles to predict: any extension of SM gauge group introduces new vector bosons

- Many beyond-the-SM theories predict new vector bosons: *W*' and *Z*'
 - GUT, SUSY, ED, Little Higgs, Technicolor, etc
 - "Natural" new particles to predict: any extension of SM gauge group introduces new vector bosons
- W' Signatures
 - Leptonic: e + v, $\mu + v$, $\tau + v$
 - Bosonic: WZ, $W\gamma$
 - Hadronic: $qq', t\overline{b}, \ell N_{\ell} (N_{\ell} \rightarrow qq'\ell')$

- Many beyond-the-SM theories predict new vector bosons: *W*' and *Z*'
 - GUT, SUSY, ED, Little Higgs, Technicolor, etc
 - "Natural" new particles to predict: any extension of SM gauge group introduces new vector bosons
- W' Signatures
 - Leptonic: e + v, $\mu + v$, $\tau + v$
 - Bosonic: WZ, $W\gamma$
 - Hadronic: $qq', t\overline{b}, \ell N_{\ell} (N_{\ell} \rightarrow qq'\ell')$
- Large W' mass opens up new channels
- Channels that are favored/suppressed: model-dependent

- Many beyond-the-SM theories predict new vector bosons: *W*' and *Z*'
 - GUT, SUSY, ED, Little Higgs, Technicolor, etc
 - "Natural" new particles to predict: any extension of SM gauge group introduces new vector bosons

Significantly larger integrated luminosity

- W' Signatures than published 2010 analyses
 - Leptonic: $e + v, \mu + v, \tau + v$
 - Bosonic: WZ, $W\gamma$
 - Hadronic: $qq', t\overline{b}, \ell N_{\ell} (N_{\ell} \rightarrow qq'\ell')$

Considered by CMS for the first time

Results presented here for the first time outside CMS

 $W' \to \ell \nu$

$W' \to \ell \nu \text{ model}$

Search for W' decaying to electron/muon and neutrino

- *W*': carbon copy of *W* (same couplings to fermions)
- Neutrino is light & stable
 - Important in context of L-R symmetric model
- No mixing between W' and other bosons (W, Z, Z')
- WZ channel also suppressed

$W' \rightarrow \ell \nu$: Analysis outline

Very similar event selection & analysis cuts for e, μ channels

- Trigger:
 - Highest p_T/E_T unprescaled single lepton trigger
 Plus M_T condition for electron channel
- Only one (good quality) isolated high- p_T/E_T lepton
- Plus: "nothing else" in the event, i.e. lepton p_T and ME_T are similar in magnitude and back-to-back in *xy* plane

$W' \rightarrow \ell \nu$: Analysis outline

Very similar event selection & analysis cuts for e, μ channels

- Trigger:
 - Highest p_T/E_T unprescaled single lepton trigger
 Plus M_T condition for electron channel
- Only one (good quality) isolated high- p_T/E_T lepton
- Plus: "nothing else" in the event, i.e. lepton p_T and ME_T are similar in magnitude and back-to-back in *xy* plane

Typical signal efficiencies

- > 80% in both electron & muon channels
- Fairly independent of W' mass

 $W' \rightarrow \ell \nu \ (\ell = e, \mu)$ signature

Spectacular signature:

- One very energetic lepton in event ("straight track")
- Plus, "nothing else" in the event

 $W' \rightarrow \ell \nu \ (\ell = e, \mu)$ signature

Spectacular signature:

- One very energetic lepton in event ("straight track")
- Plus, "nothing else" in the event

Muon channel: Event with $M_T = 778$ GeV

 $W' \rightarrow \ell \nu \ (\ell = e, \mu)$ signature

Spectacular signature:

- One very energetic lepton in event ("straight track")
- Plus, "nothing else" in the event

 $W' \to \ell N_\ell$, $N_\ell \to q q' \ell'$

$W' \to \ell \, N_\ell \, (q q' \ell') \text{ model}$

Search for W' decaying to heavy neutrino plus lepton

- Coupling to right-handed (heavy) neutrino
- L-R symmetric model: restores parity at higher energies by introducing new heavy charged bosons
 –Parity violation explained by *W*, *W'* mass difference
- Massive neutrinos: "see-saw" mechanism

 $W' \to \ell N_{\ell} (qq'\ell') \text{ model}$

Search for W' decaying to heavy neutrino plus lepton

- No L-R mixing: heavy neutrino decays via W_R'
- Cross-section: depends on W_R' , N_ℓ masses (assuming W_L' couplings)
- Final state: two (same-flavor) leptons plus two jets

Muon channel: Event with $M_{\mu\mu} = 331 \text{ GeV}, M_{\mu\mu jj} = 881 \text{ GeV}$

Electron channel: Event with $M_{ee} = 264 \text{ GeV}$, $M_{eejj} = 1009 \text{ GeV}_{24}$

$W' \rightarrow \ell N_{\ell} (qq'\ell')$: Analysis outline

Very similar event selection & analysis cuts for e, μ channels

- Single-lepton triggers
- Two (good quality) isolated leptons
- Two anti- k_T ($\Delta R = 0.5$) jets
- Ensure no jet-lepton overlaps
- Remove Z/Drell-Yan by applying $M_{\ell\ell}$ cut

$W' \rightarrow \ell N_{\ell} (qq'\ell')$: Analysis outline

Very similar event selection & analysis cuts for e, μ channels

- Single-lepton triggers
- Two (good quality) isolated leptons
- Two anti- k_T ($\Delta R = 0.5$) jets
- Ensure no jet-lepton overlaps
- Remove Z/Drell-Yan by applying $M_{\ell\ell}$ cut

Typical signal efficiencies

- 70-75% in *eejj* channel
- 75-80% in *µµjj* channel
- Assuming $m(N_\ell) > m(W_R')/2$

Background estimations

Background estimation

- $W' \rightarrow \ell \nu$: sideband fit of M_T spectrum
 - Find "signal-free" region of M_T spectrum (off-peak W)
 - Fit and use parameters to model background shape
 - Extrapolate function to "region of interest" (M_T tail)
 - Estimate background in signal region w/o relying on MC
- $W' \rightarrow \ell N_{\ell}$: combination of data- and MC-based estimates
 - Major backgrounds: top and Z +jets
 > Use MC shapes, normalize to data
 - Other backgrounds:
 - > QCD: determine from data
 - > *W* +jets, dibosons: use MC prediction

(Transverse*) Mass distributions

(*)
$$M_T = \sqrt{2 \cdot (p_T^{\mu} \cdot c) \cdot E_T^{\text{miss}} \cdot (1 - \cos \Delta \phi_{\mu,\nu})}$$

e + MET transverse mass

2011 analysis: 1.03 fb⁻¹

Figure 2: Transverse mass distribution (left) and cumulative distribution (right) for the electron channel.

No excess (compared to bgd expectations) observed in data

$\mu + MET$ transverse mass

<u>2011 analysis:</u> 1.13 fb⁻¹

Figure 3: Transverse mass distribution (left) and cumulative distribution (right) for the muon channel.

No excess (compared to bgd expectations) observed in data

eejj invariant mass

No excess (compared to bgd expectations) observed in data ₃₂

No excess (compared to bgd expectations) observed in data

Systematic Uncertainties

Systematic uncertainties

- Long list of systematic uncertainties considered (see backup) Major systematics summarized here
- $W' \to \ell \nu$
 - PDF/*k*-factor uncertainties
 - Muon p_T resolution for very energetic muons
 - Uncertainties related to background determination
- $\bullet W' \to \ell N_\ell$
 - Jet-energy scale
 - PDF/k-factor uncertainties
 - Initial & final state radiation

Statistical analysis & Exclusion limits

Setting Exclusion Limits

- Look for excess of events at tail of mass distributions
- No signal observed

 \bigcirc

- Simple "event-counting" experiments
 - What is the number of <u>expected</u> signal events?
 - What is the number of <u>expected</u> background events?
 - What is the number of <u>observed</u> events in the data?

• Limit setting

- Bayesian method with flat prior for signal cross section
- $-W' \rightarrow \ell \nu$: using "sliding" search window
- $-W' \longrightarrow \ell N_{\ell}$: using fixed search window

Exclusion limit: $e/\mu + ME_T$

- Fully correlated luminosity uncertainty
- Fully uncorrelated background uncertainty

W' mass	σ_{theor}	Exp. Limit	Obs. Limit
(GeV)	(pb)	(pb)	(pb)
1400	0.1440	0.0078	0.0042
1600	0.0633	0.0068	0.0044
1800	0.0285	0.0062	0.0040
2100	0.0094	0.0066	0.0045
2400	0.0034	0.0079	0.0055

Combined limit in SSM: Expected: m(W') > 2.20 TeV Observed: m(W') > 2.27 TeV

Significant improvement over 2010 result (1.58 TeV)

Exclusion limits: W_R' , N_ℓ mass plane

- Reconstruction, ID uncertainties between 2010, 2011: uncorrelated
- All other uncertainties: correlated

• Significant improvement over TeVatron limit (780 GeV)

This just in

$t' ar{t'} o W b W ar{b} o \ell u b q ar{q} ar{b}$

$t' \bar{t'} ightarrow W b W ar{b} ightarrow \ell u b q ar{q} ar{b}$

$t'ar{t'} o WbWar{b} o \ell u bqar{q}ar{b}$

A search is presented for the pair production of a fourth-generation t' quark and its antiparticle in proton-proton collisions at $\sqrt{s} = 7$ TeV provided by the Large Hadron Collider. The data were collected by the CMS detector during the 2011 collider run. The t' quark is assumed to decay exclusively to a W boson and a *b* quark. The search is carried out using events with a single isolated electron or muon, large missing transverse momentum, and at least four jets with large transverse momenta, one of which must be identified as originating from the fragmentation of a *b* quark. The data analyzed correspond to an integrated luminosity of 573 pb⁻¹ for the electron channel and 821 pb⁻¹ for the muon channel. No significant excess over standard model expectations is observed. Assuming strong pair production of t' quarks, a lower limit is set on the t' quark mass of 450 GeV at 95% confidence level.

$t'ar{t'} o WbWar{b} o \ell u bqar{q}ar{b}$

A search is presented for the pair production of a fourth-generation t' quark and its antiparticle in proton-proton collisions at $\sqrt{s} = 7$ TeV provided by the Large Hadron Collider. The data were collected by the CMS detector during the 2011 collider run. The t' quark is assumed to decay exclusively to a W boson and a *b* quark. The search is carried out using events with a single isolated electron or muon, large missing transverse momentum, and at least four jets with large transverse momenta, one of which must be identified as originating from the fragmentation of a *b* quark. The data analyzed correspond to an integrated luminosity of 573 pb⁻¹ for the electron channel and 821 pb⁻¹ for the muon channel. No significant excess over standard model expectations is observed. Assuming strong pair production of t' quarks, a lower limit is set on the t' quark mass of 450 GeV at 95% confidence level.

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

Summary

- Search for W' in $\ell + ME_T$ final state carried out with 1.1 fb⁻¹ of 2011 data
- Search for right-handed W' (in $\ell\ell jj$ final state) carried out with 240 pb⁻¹ of 2010-11 data
- No excess above SM background expectations is observed in data distributions
- A lower bound has been set on the W' mass, assuming SM-like couplings and no interference with other bosons:
 > m(W') > 2.27 TeV ℓ + MET
 > m(W_R') > 1.70 TeV (for m_{N_ℓ}~ 500 GeV) ℓℓjj
- Significant improvement over 2010 limits

A lower bound has been set on the W' mass, assuming SM-like couplings and no interference with other bosons:
> m(W') > 2.27 TeV
> m(W_R') > 1.70 TeV (for m_{N_ℓ}~ 500 GeV) ℓℓjj

• Significant improvement over 2010 limits

Backup

$W' \rightarrow \ell \nu$ search results in 2010

Limits	Electron (TeV)	Muon (TeV)	Combined (TeV)
CDF (5.3 fb ⁻¹ , 2 TeV)	1.12	_	
CDF (107 pb ⁻¹ , 1.8 TeV)		0.66	
CMS (36 pb ⁻¹ , 7 TeV)	1.36	1.40	1.58
Atlas (36 pb ⁻¹ , 7 TeV)	1.37	1.29	1.49

NNLO k-factor for W' production

- Signal samples generated with PYTHIA6 in LO
- Determination of NNLO k-factors for each W' mass point using FEWZ 2.0 (see: http://gate.hep.anl.gov/fpetriello/FEWZ.html)
- Calculated LO cross-section for CTEQ6L1 (used for generation) and NNLO cross-section for MSTW2008 PDF-sets for masses 600-2500 GeV in steps of 100 GeV
- Analysis uses NNLO = LO × *k*-factor

PDF uncertainties

Three different PDF sets (PDF4LHC recommendation, end of 2010)

i=MSTW2008, CTEQ66, NNPDF2.0

$$\Delta F_{\text{tot}} = \frac{1}{2} \left(\max_{i} \left(F^{i} + \left(\Delta F^{i}_{\text{PDF}+\alpha_{s}} \right)_{+} \right) - \min_{i} \left(F^{i} - \left(\Delta F^{i}_{\text{PDF}+\alpha_{s}} \right)_{-} \right) \right)$$

Background estimation

- $W' \rightarrow \ell \nu$: sideband fit of M_T spectrum
 - Find "signal-free" region of M_T spectrum (off-peak W)
 - Fit and use parameters to model background shape
 - Extrapolate function to "region of interest" (M_T tail)
 - Estimate background in signal region w/o relying on MC

Background estimation

- $W' \rightarrow \ell \nu$: sideband fit of M_T spectrum
 - Find "signal-free" region of M_T spectrum (off-peak W)
 - Fit and use parameters to model background shape
 - Extrapolate function to "region of interest" (M_T tail)
 - Estimate background in signal region w/o relying on MC

- Variations of sideband width and different functions give slightly different predictions for background at large M_T : systematic uncertainty
- Impact of fit parameters uncertainty on extrapolation: statistical uncertainty
- MC-Data difference: minor effect (including Sudakov corrections, a ~15-20% effect)

Data

Systematic uncertainties: $\ell + ME_T$

Signal

Systematic uncertainty	Value	Impact on signal
Luminosity	6 %	6 %
Muon p _T resolution and Momentum scale	0.14 TeV ⁻¹ (pT) 0.4% (scale)	10 %
MET resolution, hadronic component	10 %	2 %
Muon trigger efficiency	3 %	3 %
Combined electron efficiency (trigger, ID and reconstruction)	2 %	2 %
Electron energy scale	1% EE, 3% EC	<1%

Background

Taking into account uncertainties due to fit parameter errors in extrapolation, sensitivity of fit on range of sideband, choice of fitting function and discrepancy between MC and sideband fit prediction

Systematic uncertainties: *lljj*

Electron Channel							
Systematic							
Uncertainty	Signal	tī	Z+jets	QCD	Other bkgd	All bkgd	
Jet Energy Scale	±2-20%	±11%	$\pm 5\%$	\sim	±12%	±7%	
Electron Energy Scale	±1-3%	$\pm 4\%$	±3%		±9%	$\pm 4\%$	
Electron Reco/ID/Iso	$\pm 10\%$	$\pm 10\%$	$\pm 10\%$	< -	±10%	±10%	
Normalization	$\pm 6\%$	±12%	±7%	- /	±6%	$\pm 8\%$	
Simulation Statistics	±1-7%	±5%	$\pm 4\%$	$\setminus -$	±7%	±5%	
Theoretical	$\pm 5\%$	±13%	±19%	~ /	$\pm 13\%$	$\pm 14\%$	
QCD estimate	_	-\ \	- \	$\pm 18\%$	_	±3%	
Total	±12-25%	$\pm 24\%$	±23%	$\pm 18\%$	> ±25%	±23%	

Muon Channel

Systematic						
Uncertainty	Signal	tť	Z+jets	QCD	Other bkgd	All bkgd
Jet Energy Scale	$\pm 0.5-20\%$	$\pm 4\%^{>}$	±7%	-	$\pm 10\%$	$\pm 5\%$
Muon Energy Scale	±0-3%	$\pm 5\%$	$\pm 3\%$	-	$\pm 4\%$	$\pm 4\%$
Muon Reco/ID/Iso	±6-10%	$\pm 1\%$	$\pm 0.5\%$	-	$\pm 0.5\%$	$\pm 1\%$
Trigger Efficiency	/ ±0.3%	$\pm 0.3\%$	$\pm 0.3\%$	-	$\pm 0.3\%$	$\pm 0.3\%$
Normalization	$\pm 6\%$	$\pm 12\%$	$\pm 8\%$	-	$\pm 6\%$	$\pm 8\%$
Simulation Statistics	±1-7%	$\pm 4\%$	$\pm 3\%$	-	$\pm 9\%$	$\pm 3\%$
Theoretical	$\pm 5\%$	$\pm 13\%$	$\pm 19\%$	-	$\pm 13\%$	$\pm 14\%$
QCD estimate	—	-	-	$\pm 25\%$	—	$\pm 0.1\%$
Total	$\pm 10-25\%$	±19%	±22%	$\pm 25\%$	±22%	$\pm 17\%$

Exclusion limits: $e/\mu + ME_T$

Exclusion limits: *eejj*

Electron Channel (2010, 36 pb^{-1})

Data	Signal	$(\epsilon \times A)(\%)$	Tot. BG	tī	Z+jets	Other
3	10	52	1.9 ± 0.5	1.0	0.6	0.2

 $m(N_\ell) = 0.5 \text{ TeV}$

 $m(W_R') = 1.0 \text{ TeV}$

Electron Channel (2011, 204 pb^{-1})						
Data	Signal	$(\epsilon \times A)(\%)$	Tot. BG	tī	Z+jets	Other
8	45	44	9.4 ± 2.0	5.7	2.7	1.0

Exclusion limits: µµjj

Muon Channel (2010, 36 pb^{-1})

	Data	Signal	$(\epsilon \times A)(\%)$	Tot. BG	tŦ	Z+jets	Other		
) TeV	1	9	56	1.6 ± 0.4	0.9	0.6	0.1		
5 TeV	Muon Channel (2011, 204 pb^{-1})								
	Data	Signal	$(\epsilon imes A)(\%)$	Tot. BG	tĪ	Z+jets	Other		
	5	52	55	9.9 ± 2.2	5.5	4.0	0.4		

 $m(W_R') = 1.0 \text{ TeV}$ $m(N_\ell) = 0.6 \text{ TeV}$