Search for narrow high-mass resonances in the dielectron + dimuon final states at CMS (CMS-PAS-EXO-11-019)

> Jordan Tucker, *UCLA* For the CMS Collaboration EPS-HEP July 21, 2011

But first... $Z' \rightarrow \tau \tau$ search with 36 pb⁻¹

Introduction

- Search for new physics: extra narrow high-mass resonances.
 - E.g. new gauge bosons Z' or Randall-Sundrum gravitons G_{KK}.
- Generic shape-based search: no assumptions on absolute background rate.
- Results normalized to the Z^o peak:

$$\frac{\sigma \times BR(Z')}{\sigma \times BR(Z^0)} = \frac{N(Z')}{N(Z^0)} \times \frac{A(Z^0)}{A(Z')} \times \frac{\epsilon(Z^0)}{\epsilon(Z')}$$

Benefits:

- Luminosity uncertainty irrelevant
- Other systematic effects cancel or are reduced

CMS: the Compact Muon Solenoid

Fine-grained ECAL for precise measurement of EM energies – ultimately, $\Delta E/E < 0.5\%$ for E > 100 GeV.

 \rightarrow Excellent m_{ee} resolution, but challenge is on id of electrons vs. jets!

- Inner tracker in 3.8 T magnetic field, plus muon system for triggering, id, and to improve high-p_T measurement $\Delta p_T/p_T < 10\%$ at $p_T \sim 1$ TeV.
- \rightarrow Muon id much easier than electron id, $m_{\mu\mu}$ resolution is the challenge!

Dilepton selection

- As in Z $^{\rm o}$ cross section measurement, adapted for high $E_{\rm T}\, or\, p_{\rm T}.$
 - Differences \rightarrow small extra systematic uncertainties.
- Trigger: double EM clusters with $E_T > 33$ GeV, single muons with $p_T > 30$ GeV.
- Offline: require two isolated leptons with E_T or p_T above trigger turn-on, with further quality cuts.
- Total efficiency in simulation is >85% for m_{ll} > 1 TeV.
 - Checked lepton efficiency in data using Z^o tag+probe up to $p_T \sim 100$ GeV; for muons, also use cosmic-ray events.
 - Ratio of efficiencies from low to high mass, rather than absolute efficiencies, is important in this analysis.

Dielectron/dimuon differences

- Looser muon selection: smaller background from jets for muons.
- Smaller dielectron acceptance: no endcapendcap electron pairs allowed, gap between ECAL barrel and endcap.
- Opposite charges required for dimuons, but not for dielectrons.
- Cosmic-ray muons used to aid in understanding high-p_T collision muons.

Muon momentum/dimuon mass resolution

But:

Narrow peak broadened by mass/momentum resolution.

Adding muon system hits to tracker-only fit helps for $p_T > \sim 200 \text{ GeV}$:

- High-p muons' E loss in steel yoke + showers in muon chambers can spoil fit.
- → Use muon hits selectively: e.g. take only first station with hits, drop incompatible hits in chambers flooded by showers.

Optimizing measurement of high- p_T muons

- Improve on these algorithms by making "cocktail" of fits: for each muon, choose based on e.g. goodness-of-fit criteria.
- Gauge impact in data using cosmic-ray muons: reconstruct the same muon separately in opposite halves of CMS then compare results.

Dilepton backgrounds

- Dominant: irreducible Drell-Yan (DY) production – use DY shape from sim. in search.
- Next biggest (10% of DY above 120 GeV): ttbar and other sources of "prompt" leptons

 check in data using eµ events.
- Dileptons from misidentified jets:
 - For dimuons, negligible (<1% of DY rate above 120 GeV).
 - Dielectrons suffer more: about 5% of the DY rate above 120 GeV.
 - Estimate in data by loosening cuts (e.g. isolation).
- Cosmic-ray muons: using sidebands, estimate less than 0.1 remaining dimuon event above 120 GeV.

$e\mu$ method for ttbar, other prompt leptons

- Expect two eµ events for every ee or µµ event, then scale by different e,µ efficiencies.
- Extract scale factor N(ee, μμ)/N(eμ) from MC in bins of dilepton mass.
- Currently just a cross-check but good agreement between data and MC.

Mass range	N(eµ), data	eµ- predicted N(ee)	MC- predicted N(ee)	eμ- predicted N(μμ)	MC- predicted N(μμ)
> 120 GeV	999	420 ± 14	400 ± 64	578 ± 25	560 ± 71
> 200 GeV	300	139 ± 8	124 ± 20	194 ± 15	171 ± 22

Dielectron jet background

- Measure probability for jet reconstructed as an electron (with loosened cuts) to pass rest of selection.
 - Require exactly one reconstructed electron to remove $Z^{o} \rightarrow ee$ events.
 - Use simulation to subtract W+jet, γ +jet, Z^o→ee contamination.
- Apply to ee events to get dielectron-from-jets spectrum – compatible with simulation within target uncertainty.
- Similar strategy in dimuon channel using isolation cut.

Dielectron mass spectrum

Other prompt leptons: VV, tW, $Z \rightarrow \tau\tau$. Jets: QCD dijets, W+jets.

MC distributions normalized to NLO cross sections, then overall to the data at Z peak in 60-120 GeV.

Uncertainties in table: statistical \oplus systematic.

Source	Number of events		
	(120 - 200) GeV	>200 GeV	
CMS data	3410	809	
Total background	3375 ± 161	787 ± 67	
Z/γ^*	2992 ± 149	622 ± 62	
tt + other prompt leptons	275 ± 41	118 ± 17	
Multi-jet events	107 ± 43	46 ± 18	

Opposite-sign dimuon mass spectrum

Other prompt leptons: VV, tW, $Z \rightarrow \tau\tau$. Jets: QCD dijets, W+jets.

MC distributions normalized to NLO cross sections, then overall to the data at Z peak in 60-120 GeV.

Uncertainties in table: statistical \oplus systematic.

Source	Number of events		
	(120 - 200) GeV	>200 GeV	
CMS data	5216	1095	
Total background	5537 ± 250	1100 ± 48	
Z/γ^*	5131 ± 246	922 ± 44	
tī + other prompt leptons	404 ± 46	178 ± 20	
Multi-jet events	3 ± 3	0	

Resonance search: bump hunt

- Simple signal + background pdf, with shape parameters from MC; fit explores the difference in shapes.
- Use likelihood ratio to calculate uncorrected significance S_L as a function of the dimuon mass M.
- Correct for probability of getting at least as extreme of a fluctuation from background-only ("look-elsewhere effect", LEE) in the range 600-2000 GeV.

$$\mathcal{L} \sim \prod_{i} f_{\text{signal}} + f_{\text{background}}$$
$$f_{\text{signal}} \sim \text{Breit-Wigner}(m|M,\Gamma)$$
$$\otimes \text{Gaussian}(m|M,w)$$
$$f_{\text{background}} \sim \exp(-am)/m^{b}$$

$$S_L = \sqrt{2\ln\frac{L_{S+B}^{\max}(f_s)}{L_B}}$$

Channel	Most sig. bump at M (GeV)	Local Ζ (σ)	LEE- corrected Ζ (σ)
ee	950	2.2	0.2
μμ	1080	1.7	0.3
Combined	970	2.0	0.2

Dilepton mass limits on benchmark models

Set limits on ratio of cross sections $R_{\sigma} = \frac{\sigma(pp \to Z' + X \to \ell\ell + X)}{\sigma(pp \to Z + X \to \ell\ell + X)}$ using a Bayesian method. 95% CL limits:

Channel	μμ	ee	μμ+ее
Z _{SSM}	1780 GeV	1730 GeV	1940 GeV
Ζ _ψ	1440 GeV	1440 GeV	1620 GeV
G _{KK} , c = 0.05	1240 GeV	1300 GeV	1450 GeV
G _{KK} , c = 0.1	1640 GeV	1590 GeV	1780 GeV

Conclusions

- Data/MC agreement is good still waiting for a bump.
- Cross-checks/systematic studies show backgrounds are under control.
- 2011 data has piled in fast expecting to have 400% more by the end of the year.
- Thanks to CMS and the LHC, and...
- Thanks to you for listening!

Backup information

Electron selection

variable	barrel	endcap	
ET	> 35 GeV	> 40 GeV	
η _{sc}	< 1.442	$1.56 < \eta < 2.5$	
seed	ECAL seeded	ECAL seeded	
missing hits	=0	=0	
$\Delta \eta_{in}$	< 0.005	< 0.007	
$\Delta \phi_{in}$	< 0.09	< 0.09	
H/E	< 0.05	< 0.05	
E^{2x5}/E^{5x5}	> 0.94 OR	-	
	$E^{1x5}/E^{5x5} > 0.83$		
$\sigma_{i\eta i\eta}$	-	< 0.03	
ical Em Had Dopth 1	$< 2 + 0.03 \times E_T \text{ GeV}$	$< 2.5 \text{ GeV}$ for $E_T < 50 \text{ GeV}$	
Isor Ent + Had Deptit 1		$< 2.5 + 0.03 \times (E_T - 50) \text{ GeV}$	
isol Had Depth 2	-	< 0.5 GeV	
isol Pt Tracks	< 7.5 GeV/c	< 15 GeV/c	

Dielectron energy scale/resolution

- Fit $Z^{o} \rightarrow ee$ peak in data and simulation and compare.
- Take resolution at high mass from simulation, applying additional smearing derived at Z^o peak:

Dielectron eff. scale factor

$$\mathcal{L}(m|R_{\sigma}, M, \Gamma, w, \alpha, \kappa, \mu_{\mathsf{B}}) = \frac{\mu^{N} e^{-\mu}}{N!} \prod_{i=1}^{N} \left(\frac{\mu_{\mathsf{S}}(R_{\sigma})}{\mu} f_{\mathsf{S}}(m_{i}|M, \Gamma, w) + \frac{\mu_{\mathsf{B}}}{\mu} f_{\mathsf{B}}(m_{i}|\alpha, \kappa) \right)$$

with:

- m_i = observed mass spectrum;
- $f_{s}(m_{i}|M,\Gamma,w) = \text{signal pdf}$, Breit-Wigner of width Γ and mass M, convoluted with Gaussian with width w;
- $f_{\mathsf{B}}(m_i|\alpha,\kappa) \sim \exp(-\alpha m)m^{-\kappa} = \text{background pdf};$
- *R*_σ = ^{σ(pp → Z' + X → ℓℓ + X)}/_{σ(pp → Z + X → ℓℓ + X)} = the cross section ratio, which goes into the likelihood function as part of the signal Poisson mean μ_s = *R*_σ · μ_Z · *R*_ε, where μ_Z is the Poisson mean number of Z^o → ee or μμ events, and *R*_ε is the ratio of total efficiency for Z' and Z^o decays;
- μ_B is the Poisson mean of the total background yield, $\mu = \mu_S + \mu_B$, and N is the total number of events with mass above 600 GeV.

Dilepton systematics

- 3% (8%) on the acceptance times efficiency ratio evolution from low to high mass for dimuons (dielectrons), which includes PDF uncertainties (relevant to the acceptance) and the mass dependence of K-factors.
- For dimuons, sensitivity study to mass scale uncertainty (affecting only the region below 1250 GeV where there are events) showed negligible impact up to the maximum possible from alignment effects; for dielectrons, study at Z^o peak results in 1% for barrel and 3% for endcap.
- For dimuons, effect of possible χ²-invariant "weak mode" in alignment, which corresponds to a muon tracking curvature bias, folded into estimate of Gaussian width for signal pdf.
- Shape systematics explored:
 - include an extra background shape representing the ttbar component and varying its amplitude;
 - trying a different functional form for the background pdf;
 - and changing the low-mass cut-off point for the DY shape fit from 200 GeV down to 150 GeV, which changes the background shape parameters.

RSG diphoton search with 36 pb⁻¹

