

Vector Meson Production ep-->ep $\pi^+ \pi^-$ **ZEUS Collaboration**

Two pion exclusive electroproduction, e p \rightarrow e p $\pi^+ \pi^-$, has been studied in the mass range 0.4 < M_{$\pi\pi^-}$ < 2.5 GeV. The two-pion</sub> invariant mass distribution is used to obtain the pion electromagnetic form factor. The Q² dependence of the ratios $\sigma(\rho'(1450) \rightarrow \pi\pi)/\sigma(\rho(770))$ and $\sigma(\rho''(1700) \rightarrow \pi\pi)/\sigma(\rho(770))$ is extracted.

Vector Meson Production ep \rightarrow ep $\pi^+\pi^-$	Events Selection	Pion From Factor $F_{\pi}(M_{\pi\pi})$
 Exclusive electroproduction of vector mesons, γ*p → epπ⁺π⁻, at large centre-of-mass energy, W, at large γ* virtuality, Q²: virtual photon fluctuates into a qq pair qq pair interacts with the proton through a two-gluon ladder hadronizes into q² 	 data collected by the ZEUS Detector 1998-2000 (82 pb⁻¹) two pions and electron are measured in the detector no additional activity above noise level Kinematical range: 0.4 < M_{ππ} < 2.5 GeV 2 < Ω² < 80 GeV² 	 is given by contribution from vector mesons ρ (770), ρ'(1450), ρ"(1700) known as Kuhn-Santamaria parametrization F_π(M_{ππ}) = [BW(ρ)+βBW(ρ')+γBW(ρ")] /(1+β+γ) where: - β,γ are relative amplitudes

The mass fit

The two pion invariant mass is fitted as:

 $\frac{dN}{dM_{\pi\pi}} = N \left[\left| \mathbf{F}_{\pi\pi} \right|^2 + B \left(\frac{M_{\rho}}{M_{\pi\pi}} \right)^n \right]$

Fit includes 11 parameters: overall normalization N, parameters of non-resonant background: B and n, the masses and the widths of the three resonances and their relative contributions β and γ

Results:

- ρ (770) and $\rho''(1700)$ are clearly visible, $\rho'(1450) a$ mere shoulder
- the masses and the widths of the ρ (770) and $\rho''(1700)$ as

well as the width of $\rho'(1450)$ agree with PDG

0.5 1.25 1.5 1.75 0.25 0.75 2.25 2.5 $M_{\pi\pi}$ (GeV)

0.8 1.2 1.6 1.4 1.8 2.2 2.4 $M_{\pi\pi}$ (GeV)

Q² dependence of relative amplitudes

Fit: the masses and the widths of the three resonances were fixed to the values found in overall fit.

Results:

- reasonable description of data in three Q² regions
- the absolute value of β increases with Q^2
- γ remains Q² independent within the uncertainties

Cross	section	ratios	as a	function	of \mathbf{O}^2
		7/7/7/7/			

Ratio is defined as:

$$R_{V} = \frac{\sigma(V \rightarrow \pi \pi)}{\sigma(\rho(770))}$$

• the value of $R_{\rho'(1450)}$ increases with Q

• the value of $R_{\rho''(1700)}$ is approximately constant or slightly increases • this behaviour is predicted by several models

Discussion

- The Q² dependence of the suppression of the states $\rho'(1450)$ and $\rho''(1700)$ with respect to $\rho(770)$ is different. • The suppression of the 2S state ($\rho'(1450)$) is connected to
- a node effect which results in cancellations of contributions from different impact parameter regions at lower Q², while at higher Q² the effect of cancellation vanishes.
- The D state ($\rho''(1700)$) suppression is connected to the spinorial structure of the qq state into which the photon fluctuates. It is not a pure S wave but contains also a small admixture of D wave, which is Q² independent.