irfu CEO saclay

Diboson production at the LHC with the CMS detector

- Introduction
- ◆ ZZ / WZ / WW production cross sections measured with 1.1 fb⁻¹
- W γ / Z γ production cross sections measured with 36 pb⁻¹
- Limits on anomalous triple gauge couplings

Matthieu Marionneau On behalf of the CMS Collaboration

> EPS-HEP Grenoble July 22th 2011

Diboson physics @ the LHC : motivation

Fundamental test of the Standard Model $_{q}$ \rightarrow Self interaction between electroweak boson triple gauge couplings (TGCs) \overline{q} W, Z, γ \overline{q} W, Z, γ

Probe for new physics

(enhancement of diboson production cross section)

- Resonances with diboson final states
- → Anomalous TGCs

Higgs hunting

H coupled to electroweak bosons :

 \rightarrow H \rightarrow ZZ / H \rightarrow WW

(see talks by D.Kovalsky and R.Salerno)

The CMS detector

22/07/2011

M. Marionneau / EPS-HEP Grenoble

Studied diboson final states

Only fully leptonic modes are considered ($Z^0 \rightarrow l^+ l^-$ and $W^{\pm} \rightarrow l^{\pm} \nu$)

- Electron and muon channels for all diboson processes
- \rightarrow Tau channel also in ZZ final state \rightarrow ZZ \rightarrow ll $\tau\tau$ with l = e, μ
 - Advantages

- Clear signature : isolated leptons (+ possibly missing transverse energy)

- → Low QCD background
- Challenges

 \rightarrow Low branching ratio (0.09 % to 1%)

Overview of the analyses

- $ZZ \rightarrow 41$ with 1.1 fb⁻¹
- WZ \rightarrow 3lv with 1.1 fb⁻¹ WW \rightarrow llvv with 1.1 fb⁻¹
- W $\gamma \rightarrow l\nu\gamma$ with 36 pb⁻¹
- $Z\gamma \rightarrow ll\gamma$ with 36 pb⁻¹
- Anomalous triple gauge couplings WWV and $ZV\gamma$ (V = Z, γ) with 36 pb⁻¹

Phys.Lett.B701 535-555, 2011 Phys.Lett.B699 25-47.2011

$ZZ \rightarrow 4l$: selection

- ✤ 2010: Single lepton trigger
- ✤ 2011: Double lepton trigger

First Z

two isolated leptons of same flavor, opposite signs, $p_T > 20 / 10 \text{ GeV}$ $60 < m_{\mu} < 120 \text{ GeV}$

Second Z

◆ ZZ → 4e, 4µ and 2e2µ final states { two isolated leptons of same flavor, opposite signs, $p_T > 7$ (5) for e (µ) $60 < m_{11} < 120$ GeV

◆ ZZ → 2l2τ (l = e,μ) final state :

$$M_{4l} (GeV/C^2)$$

$$\int_{30 < visible mass of di-tau system < 80 GeV$$

22/07/2011

$ZZ \rightarrow 4l$: remaining backgrounds

Background processes :

- -> Zbb / ttbar : reduced and estimated using lepton impact parameter value
- \rightarrow Z + jet : reduced and estimated using identification and isolation variables

Visible mass of the $2l2\tau$ system in the Z+jet control sample (relaxed cut on isolation / flavour / charge) (ZZ $\rightarrow 2l2\tau$ channel)

ZZ cross section @ $\sqrt{s} = 7 TeV$

Signal selection efficiency : computed with the Tag and Probe method

Number of selected events

Uncertainties

		1 1			
Final state	$N_{\rm obs}$	$N_{\rm ostimated}^{\rm backg.}$	$N_{\rm expected}^{ZZ}$	source	uncertainty
1		-0.004 ± 0.004	$27 \downarrow 0.4$	$\operatorname{trigger}$	1.5%
4μ	Z	0.004 ± 0.004	3.7 ± 0.4	lepton identification	3%
4e	0	0.14 ± 0.06	2.5 ± 0.2	lepton isolation	2%
2e2µ	6	0.15 ± 0.06	6.3 ± 0.6	lepton energy scale	1%
212τ	1	0.8 ± 0.1	14 + 01	au reconstruction	6%
	1	0.0 ± 0.1	$1.T \perp 0.1$	au energy scale	3%

Cross section computed with a constrained fit using all channels :

$$\sigma(pp \to ZZ + X) = 3.8^{+1.5}_{-1.2} \text{ (stat.)} \pm 0.2 \text{ (syst.)} \pm 0.2 \text{ (lumi.) pb}$$

NLO Prediction (MCFM): 6.4 ± 0.6 pb

0

Z selection : • Two isolated leptons with $p_T > 20 / 10 \text{ GeV}$ (electrons)

or $p_T > 15$ GeV for muons

 $WZ \rightarrow 3lv$: selection

- ♦ $60 < m_{11} < 120$ GeV.
- Ambiguities solved by taking the Z candidate with mass closest to nominal Z mass

W selection :

• Third isolated lepton with $p_T > 20 \text{ GeV}$

Which backgrounds after selection ?

- Z+jet (jet faking a lepton)
- Top background
- $Z\gamma$ (photon faking an electron)
- \Rightarrow ZZ \rightarrow 41

Rejection of ZZ :

→ Veto on a second reconstructed Z Rejection of Z+jet and $Z\gamma$ background :

→ Missing transverse energy > 30 GeV

$WZ \rightarrow 3lv$: remaining backgrounds and selection efficiency

Data driven estimations for Z+jets and top backgrounds : — "Matrix" method $N_{sel} = \varepsilon .N_{WZ} + p_{fake} .N_{Zjet}$

MonteCarlo simulation estimations :

 $- Z\gamma$ $- ZZ \rightarrow 41$

Assigned systematic uncertainty : 20 %

Total selection efficiency $A \cdot \epsilon \cdot \rho$

- A· ϵ : selection efficiency on MonteCarlo simulation sample
- ρ : correction factor obtained on a control sample (T&P : inclusive Z, data and simulation)

		uncertainty	main sources
.	$\mathcal{F} = A.\epsilon$	2.8 - 3.2%	NLO Effects / PDFs / Lepton energy scale
<u>Main uncertainties :</u>	ρ	3.6 - 6.7%	reconstruction/ ID /isolation
	background	1.5 - 2.8%/3.5 - 5.5%	top / Z+jet

background	N_{bkg}
Z+jet and top	8.1
other backgrounds	~ 1

$WZ \rightarrow 3lv \, cross \, section @ \sqrt{s} = 7 \, TeV$

Results for each channel :

channel	Nobserved	cross section (pb)
$\sigma_{WZ \rightarrow eeev}$	22	$0.086 \pm 0.022(stat) \pm 0.007(syst) \pm 0.005(lumi)$
$\sigma_{WZ \to ee\mu\nu}$	20	$0.060 \pm 0.017(stat) \pm 0.005(syst) \pm 0.004(lumi)$
$\sigma_{WZ \to \mu \mu e \nu}$	13	$0.053 \pm 0.018(stat) \pm 0.004(syst) \pm 0.003(lumi)$
$\sigma_{WZ \to \mu\mu\mu\nu}$	20	$0.060 \pm 0.016(stat) \pm 0.004(syst) \pm 0.004(lumi)$

Combined :
$$\sigma(pp \rightarrow WZ + X) = 17.0 \pm 2.4 \text{ (stat.)} \pm 1.0 \text{ (syst.)} \pm 1.0 \text{ (lumi.) pb}$$

NLO prediction : 19.8 ± 0.1 pb

120

110

 $m_Z^{}(GeV)$

90

80

100

70

$WW \rightarrow 2l2v: 2011 \ selection$

Signal signature :

- Two isolated high p_T leptons and significant missing transverse energy from neutrinos
- Leading lepton $p_T > 20$ GeV, trailing lepton $p_T > 10$ GeV

$WW \rightarrow 2l2v$: background estimation, selection efficiencies

Background estimation :

- Data-driven methods for dominant backgrounds
 - → QCD / W+jet
 - → Тор
 - → Z / WZ / ZZ
- MonteCarlo simulation for smaller backgrounds
 → Wγ
 → Z → ττ
 - → non resonnant WZ/ ZZ

Efficiencies :

- Tag and Probe method for lepton related efficiencies
- Jet veto : simulation plus correction with a Z+jet control sample
- Missing E_T selection : simulation

Total selection efficiency : $\varepsilon = 6.7 \pm 0.5 \%$

$WW \rightarrow 2l2v \, cross \, section @ \sqrt{s} = 7 \, TeV$

Number of events

Sample	Yield
$qq \rightarrow W^+W^-$	349.7 ± 30.3
$gg ightarrow W^+W^-$	17.2 ± 1.6
W+jets	106.9 ± 38.9
$t\overline{t} + tW$	63.8 ± 15.9
$Z/\gamma^* \rightarrow \ell\ell + WZ + ZZ$	12.2 ± 5.3
$Z/\gamma^* ightarrow au au$	1.6 ± 0.4
WZ/ZZ not in $Z/\gamma^* \rightarrow \ell\ell$	8.5 ± 0.9
$W + \gamma$	8.7 ± 1.7
signal + background	568.6 ± 52.2
Data	626

Main uncertainties

source	uncertainty
background estimation	$\sim 20\%$
W + jet	36%
top	25%
signal efficiency	$\sim 8\%$
lepton efficiencies	1.5 - 2.5%
E_T^{miss} resolution	2.0%
jet counting	5.5%

In 2011 with 1.1 fb⁻¹: $\sigma_{W^+W^-} = 55.3 \pm 3.3 \text{ (stat)} \pm 6.9 \text{ (syst)} \pm 3.3 \text{ (lumi)} \text{ pb}$ In 2010 with 36 pb⁻¹: $\sigma_{W^+W^-} = 41.1 \pm 15.3 \text{ (stat)} \pm 5.8 \text{ (syst)} \pm 4.5 \text{ (lumi)} \text{ pb}$. NLO prediction : $43.0 \pm 2.1 \text{ pb} (qq \rightarrow WW) + 1.46 \text{ pb} (gg \rightarrow WW)$

 $W\gamma \rightarrow l\nu\gamma$: selection

2010 data : 36 pb⁻¹

Final state of interest includes initial and final state radiation (ISR / FSR) as well as WW γ TGC

$W\gamma \rightarrow l\nu\gamma \ cross \ section \ @ \ \sqrt{s} = 7 \ TeV$

Main systematic uncertainties

	uncertainty	main sources
$A.\epsilon$	5.2 - 6.1%	PDFs / energy scales
ρ	1.6 - 1.9%	γ ID-Isolation / E_T^{miss} selection
backgrounds	6.3%	W + jet

10Events / 10 GeV CMS, 36 pb⁻ $\sqrt{s} = 7 \text{ TeV}$ - Data 10^{3} Number of selected events $W\gamma$ MC + backgrounds W+jets $N_{bkq}^{\mu\nu}$ $N^{e\nu}_{bkq}$ process Other backgrounds 10^{2} $261 \pm 19 \pm 16$ W+jet $220 \pm 16 \pm 14$ aTGC $\Delta \kappa_{\gamma} = 0, \lambda_{\gamma} = 0.5$ other backgrounds 7.7 ± 0.5 16.4 ± 1.0 10 all data 452520Measured cross section with 36 pb⁻¹ : 10^{-1} $(E_{T} > 10 \text{ GeV}, \Delta R(l, \gamma) > 0.7)$ 2040 80 180 200 60 100 120 140160 E_{T}^{γ} [GeV] $\sigma(pp \to W\gamma + X) \times \mathcal{B}(W \to \ell\nu) = 56.3 \pm 5.0 \text{ (stat.)} \pm 5.0 \text{ (syst.)} \pm 2.3 \text{ (lumi.)} \text{ pb}$ NLO prediction : 49.4 ± 3.8 pb

 $Z\gamma \rightarrow ll\gamma$: selection

$ZZ\gamma$ and $Z\gamma\gamma$ not allowed by SM : only ISR and FSR contribution

Z selection : two isolated lepton with $p_T > 20 \text{ GeV}$ $m_{11} > 50 \text{ GeV}$ Photon selection : $E_T > 10 \text{ GeV}$ and $\Delta R(1,\gamma) > 0.7$

Large background contribution from Z + jet process :

- \blacklozenge Same data driven estimation as for W γ
- Other backgrounds estimated with simulation

Main systematic uncertainties :

	uncertainty	main sources
$A.\epsilon$	4.3 - 5.8%	PDFs / energy scales
ρ	1.5%	γ / lepton ID-Isolation
backgrounds	9.3 - 11.4%	Z + jet

Z+jet background estimation

$Z\gamma \rightarrow ll\gamma$: separation between ISR and FSR

$$Z\gamma \rightarrow ll\gamma$$
 cross section @ $\sqrt{s} = 7$ TeV

Limits on aTGCs : $WW\gamma/ZZ\gamma/Z\gamma\gamma$

Deviation to SM modelled by an effective Lagrangian

- No form-factor
- ✤ SU(2)xU(1) gauge invariance
- No C/P-violating parameters

Two parameters for WW γ : $\Delta \kappa_{\gamma} = 1 - \kappa_{\gamma}$ (SM $\Delta \kappa_{\gamma} = 0$), $\lambda_{\gamma} = \lambda_{Z}$ (SM =0)

 $ZV\gamma$ (V=Z, γ) : h_3^{γ} , h_4^{γ} and h_3^{Z} , h_4^{Z} (=0 at tree level in SM)

Limits obtained by using a profiled likelihood based on the E_T spectrum of the photon

Baur and Sherpa MC tools used for generation with aTGCs

WWγ	$ZZ\gamma$	$Z\gamma\gamma$
$-1.11 < \Delta \kappa_{\gamma} < 1.04$	$-0.05 < h_3 < 0.06$	$-0.07 < h_3 < 0.07$
$-0.18 < \lambda_\gamma < 0.17$	$-0.0005 < h_4 < 0.0005$	$-0.0005 < h_4 < 0.0006$

Sensitivity similar to that of the Tevatron Stringent limit on h_4

22/07/2011

M. Marionneau / EPS-HEP Grenoble

Anomalous TGC from WW analysis : WWV

<

0.4

0.2

-0.2

-0.4

-0.6∟ -0.6

2010 data : 36 pb⁻¹ Same assumptions as for WW γ from V γ analysis

Three parameters : λ_{Z} (=0 in SM) κ_{λ} and g_{1}^{Z} (=1 in SM) $\rightarrow \Delta \kappa_{\lambda} / \Delta g_{1}^{Z}$

Limits set using the leading lepton transverse momentum spectrum (unbinned fit)

 $\begin{array}{c|c} \lambda_Z & \Delta g_1^Z & \Delta \kappa_\gamma \\ \hline \text{Unbinned fit} & [-0.19, 0.19] & [-0.29, 0.31] & [-0.61, 0.65] \end{array}$

Modelisation of aTGCs with Sherpa and MCFM

Similar sensitivity to Tevatron results presented in :

- Phys. Rev. Lett. 104 (2010) 201801
- Phys. Rev. Lett. 103 (2009) 191801

Diboson processes WW, WZ, ZZ, W γ and Z γ measured in CMS using 36 pb⁻¹ (2010) or 1fb⁻¹ (2011)

Measured cross sections in agreement with Standard Model expectations

Limits on WW γ , ZZ γ and Z $\gamma\gamma$ anomalous triple gauge coupling values with sensitivity similar to that of the Tevatron, using 2010 data

More exiting results with the increasing of luminosity

Where are we now ?

Backup

ZZ systematic uncertainties

-		-	
	4μ	4e	2e2µ
source		Effects on acceptance A	
PDF+QCD scale	2.2 %	2.2 %	1.8~%
source	Effec	cts on efficiency ϵ (from	[6])
total uncertainty on ϵ	1.7 %	3.7 %	3.0 %
Background (Z+jets)	100 %	43 %	40%
Luminosity		6 %	

WZ systematic uncertainties

		eee	ееµ	µµе	μμμ	
Source	Systematic uncertainty	Ei	Effect on $\mathcal{F} = A \cdot \epsilon_{MC}$			
Electron energy scale	2%	1.7%	0.25%	0.9%	n/a	
Muon p_T scale	1%	n/a	0.5%	0.2%	0.9%	
MET Resolution		0.5%	0.5%	0.5%	0.5%	
MET Scale		0.3%	0.2%	0.1%	0.1%	
PDF	1.0%	1.0%	1.0%	1.0%	1.0%	
NLO effect	2.5%	2.5%	2.5%	2.5%	2.5%	
Total uncertainty on $\mathcal{F} = A \cdot \epsilon_{MC}$		3.2%	2.8%	2.9%	2.9%	
Source	Systematic uncertainty		Effect	on ρ_{eff}		
Electron trigger	1.5%	1.5%	1.5%	n/a	n/a	
Electron reconstruction	0.9%	2.7%	1.8%	0.9%	n/a	
Electron ID and isolation	2.5%(WP95), 3.2%(WP80)	5.9%	5.0%	3.2%	n/a	
Muon trigger	0.54%	n/a	n/a	1.08%	1.08%	
Muon reconstruction	0.74%	n/a	0.74%	1.48%	2.22%	
Muon ID and isolation	0.74%	n/a	0.74%	1.48%	1.94%	
Total uncertainty on ρ_{eff}		6.7%	5.6%	4.2%	3.6%	
Source	Systematic uncertainty	È .	Effect on	WZ yield	l	
Background estimation						
ZZ	20%	0.4%	1.1%	0.7%	1.1%	
Ζγ	20%	0.08%	0.01%	0.005%	0.01%	
tī		1.5%	1.8%	2.8%	1.7%	
P _{fake}		3.5%	5.2%	5.5%	4.0%	
Source	Systematic uncertainty	Effect on luminosity			у	
Luminosity	6.0%	6.0%	6.0%	6.0%	6.0%	

WW systematic uncertainties

Source	$\begin{array}{c} qq \rightarrow \\ W^+W^- \end{array}$	$gg \rightarrow W^+W^-$	non-Z resonant WZ/ZZ	top	DY	W + jets	$V(W/Z) + \gamma$
Luminosity			6				6
Trigger efficiencies	1.5	1.5	1.5			—	1.5
Muon efficiency	1.5	1.5	1.5				1.5
Electron id efficiency	2.5	2.5	2.5			—	2.5
Momentum scale	1.5	1.5	1.5			—	1.5
$E_{\rm T}^{\rm miss}$ resolution	2.0	2.0	2.0			—	1.0
pile-up	1.0	1.0	1.9			—	1.0
Jet counting	5.5	5.5	5.5			—	5.5
PDF uncertainties	3.0	3.0	4.0			—	4.0
$gg \rightarrow WW$ QCD scale		50				—	
W + jets norm.		—		—	—	36	
top norm.				25		—	
$Z/\gamma^* \rightarrow \ell\ell$ norm.					60	—	
Monte Carlo statistics	1	1	4	6	20	20	10

$V\gamma(V = W,Z)$ systematic uncertainties

	$W\gamma ightarrow e u \gamma$	$W\gamma ightarrow \mu u \gamma$	$Z\gamma ightarrow ee\gamma$	$Z\gamma ightarrow \mu\mu\gamma$
Source	Effect on $A \cdot \epsilon_{MC}$			
Lepton energy scale	2.3%	1.0%	2.8%	1.5%
Lepton energy resolution	0.3%	0.2%	0.5%	0.4%
Photon energy scale	4.5%	4.2 %	3.7%	3.0%
Photon energy resolution	0.4%	0.7%	1.7%	1.4%
Pile-up	2.7%	2.3%	2.3%	1.8%
PDFs	2.0%	2.0%	2.0%	2.0%
Total uncertainty on $A \cdot \epsilon_{MC}$	6.1%	5.2%	5.8%	4.3%
	Effect on $\epsilon_{data}/\epsilon_{MC}$			
Trigger	0.1%	0.5%	< 0.1%	< 0.1%
Lepton identification and isolation	0.8%	0.3%	1.1%	1.0%
$E_{\rm T}^{\rm miss}$ selection	0.7%	1.0%	N/A	N/A
Photon identification and isolation	1.2%	1.5%	1.0%	1.0%
Total uncertainty on $\epsilon_{data}/\epsilon_{MC}$	1.6%	1.9%	1.6%	1.5%
Background	6.3%	6.4%	9.3%	11.4%
Luminosity	4%			

$W\gamma \rightarrow l\nu\gamma$: radiation-amplitude zero

222

Destructive interferences between following diagrams

and

Already observed by D0 using the "charge-signed rapidity" : $Q_1 \Delta \eta(1,\gamma)$ For pp collision : minimum located at $Q_1 \Delta \eta(1,\gamma) = 0$

FSR W γ radiation amplitude reduced by requiring M_T(1, γ , MET) > 90 GeV.

