Study of the Dijet Invariant Mass in W + 2 jet events

Jadranka Sekaric for the **DØ Collaboration** (University of Kansas)

EPS HEP 2011, July 21, Grenoble, FR

Results from the CDF Experiment

2

Significant excess of events in the dijet mass distribution at M_{JJ} ~145 GeV (3.2 σ)

- Excess modeled with a Gaussian with a width expected from the dijet mass resolution
- Efficiency from MC WH with m_H@150 GeV→Ivbb
- If a new particle X, with BR(X \rightarrow jj) = 1: $\sigma(pp \rightarrow WX) \approx 4 pb$

used as a benchmark cross section in the DØ study

Results from the CDF Experiment

Significant excess of events in the dijet mass distribution at M_{JJ} ~145 GeV (4.3 σ)

www-cdf.fnal.gov/physics/ewk/2011/wjj/7_3.html

Do the DØ data show a similar excess at M_{JJ} ~145 GeV?

Same event selection as in the CDF analysis Detailed treatment of systematic uncertainties

- Fit SM processes to data
- \Rightarrow Is there an excess of events similar to that in CDF data?

• Include a model "a la CDF" for $WX \rightarrow I_{V}jj$ in the fit \Rightarrow How large excess do the DØ data support?

Cross checks with signal-injected data

The DØ Experiment (Fermilab, US)

- Silicon Tracker
- Central Fiber Tracker
- Solenoid
- Calorimeter
- Muon System

 Integrated Luminosity Recorded by DØ: 10.3 fb⁻¹
 Peak Luminosity 4.2×10³² cm⁻²s⁻¹

Event Selection

 $W(\rightarrow Iv)$ + 2 jets from 4.3 fb⁻¹ DØ data, single lepton and lepton + jets triggers

Electrons

- $p_T \ge 20 \text{ GeV}, |\eta| \le 1.0$
- Isolated in calorimeter/tracker
- Good EM shower shape
- Match to a track

Muons

- $p_T \ge 20 \text{ GeV}, |\eta| \le 1.0$
- Isolated in calorimeter/tracker
- Hits in muon system (3 layers)
- Match to a track

Global Selection

Missing $E_T (MET) \ge 25$ GeV, $M_T(W \rightarrow I_V) \ge 30$ GeV $M_T(W \rightarrow I_V) < 200$ GeV (in the muon channel) Veto events with more than 1 charged lepton

Event Selection

 $W(\rightarrow Iv)$ + 2 jets from 4.3 fb⁻¹ DØ data, single lepton and lepton + jets triggers

Jets

- At least two tracks originating from the primary interaction point
- Same jet selection as CDF:

Two jets with $p_T \ge 30 \text{ GeV}$ (we do not veto events with extra jets with $p_T < 30 \text{ GeV}$) Jet $|\eta_J| < 2.5$, $|\Delta \eta_{JJ}| < 2.5$, $p_T(JJ) \ge 40 \text{ GeV}$, $\Delta \phi$ (leading jet, MET) > 0.4

Standard Jet Energy Scale

Measured in photon+jet and dijet events (quark dominated) Correct the jet energy back to the particlelevel for:

- detector energy response
- out-of-cone showering
- additional $p\overline{p}$ interaction (pileup, ZB/MB)

Event Selection

 $W(\rightarrow Iv)$ + 2 jets from 4.3 fb⁻¹ DØ data, single lepton and lepton + jets triggers

Jets

- At least two tracks originating from the primary interaction point
- Same jet selection as CDF:
- Two jets with $p_T \ge 30 \text{ GeV}$ (we do not veto events with extra jets with $p_T < 30 \text{ GeV}$) Jet $|\eta_J| < 2.5$, $|\Delta \eta_{JJ}| < 2.5$, $p_T(JJ) \ge 40 \text{ GeV}$, $\Delta \phi$ (leading jet, MET) > 0.4

Standard Jet Energy Scale

- Measured in photon+jet and dijet events (quark dominated) Correct the jet energy back to the particle-
- level for:detector energy response
- out-of-cone showering
- additional pp interaction (pileup, ZB/MB)

Additional Jet Energy Calibration (relative data/MC corrections)

 $\begin{array}{l} \mbox{Measured in Z+jet events (MC: Alpgen)} \\ (gluon \ dominated) \\ \mbox{Correct } p_T \ imbalance \ and \ energy \\ resolution \ for: \end{array}$

- soft out-of-cone radiation
- different quark/gluon composition (applied to Alpgen W+jet sample)

Modeling of SM processes

Event Source	Generator	$\sigma(\mathbf{SM})$ /	′ σ (WW)	= 12.4 pb	
WW	Pythia		1.0	NLO	
WZ	Pythia		0.3	NLO	Ť
ZZ	Pythia		0.1	NLO	qw
W+light flavor jets W+heavy flavor jets Z+light flavor jets Z+heavy flavor jets	Alpgen Alpgen Alpgen Alpgen	+ Pythia	$800 \\ 30 \\ 30 \\ 1$	from FIT from FIT NNLO NNLO	q q q q
Double-Top Single-Top	Alpgen Comphep	+ Pythia	$0.6 \\ 0.2$	NNLO NNLO	q g t www.

Multijet Background

(jet misidentified as a lepton)

- Estimated from (multijet enriched) data
- Corrected for contributions already accounted for by MC
- Normalization: template fit of $M_{T}(W \rightarrow I_{V})$

Modeling of SM processes

Event Source	Generator	$\sigma(SM)$ /	σ(WW) :	= 12.4 pb	
WW WZ ZZ	Pythia Pythia Pythia		1.0 0.3 0.1	NLO NLO NLO	$q \longrightarrow W/Z$
W+light flavor jets W+heavy flavor jets Z+light flavor jets Z+heavy flavor jets	Alpgen Alpgen Alpgen Alpgen	+ Pythia	800 30 30 1	from FIT from FIT NNLO NNLO	q q q q q q q q q q q q q q q q q q q
Double-Top Single-Top	Alpgen Comphep	+ Pythia	$0.6 \\ 0.2$	NNLO NNLO	q g t b

1. We do not apply data-driven corrections to Alpgen MC when comparing to the CDF result

Modeling of SM processes

Event Source	Generator	$\sigma(SM)$ /	σ(WW)	= 12.4 pb	
WW	Pythia		1.0	NLO	$q \longrightarrow w$
WZ	Pythia		0.3	NLO	Ť
ZZ	Pythia		0.1	NLO	qw
W+light flavor jets W+heavy flavor jets Z+light flavor jets Z+heavy flavor jets	Alpgen Alpgen Alpgen Alpgen	+ Pythia	$800 \\ 30 \\ 30 \\ 1$	from FIT from FIT NNLO NNLO	q q q q
Double-Top Single-Top	Alpgen Comphep	+ Pythia	$0.6 \\ 0.2$	NNLO NNLO	q g t start

2. We include uncertainties on Alpgen MC modeling and due to tuning of Alpgen parameters when comparing to the CDF result

<u>N</u>ormalization (flat) and/or <u>D</u>ifferential (shape) of the dijet mass distribution max. deviation in the shape/normalization of the dijet mass distribution after ±1σ parameter changes given in [%]

Source of systematic uncertainty	Diboson signal	$W{+}\mathrm{jets}$	$Z{+}\mathrm{jets}$	Top	Multijet	Nature	$\Delta \sigma \ (pb)$
Trigger/Lepton ID efficiency	± 5	± 5	± 5	± 5		Ν	
Trigger correction, muon channel	± 5	± 5	± 5	± 5		D	
Jet identification	± 1	± 1	± 2	± 1		N D	
Jet energy scale	± 10	± 5	± 7	± 5		N D	
Jet energy resolution	± 6	± 1	± 3	± 6		N D	
Jet vertex confirmation	± 3	± 3	± 4	± 1		N D	
Luminosity	± 6.1	± 6.1	± 6.1	± 6.1		Ν	
Cross section	± 7	± 6.3	± 6.3	± 10		N	
V+hf cross section		± 20	± 20			N	
Multijet normalization					± 20	N	
Multijet shape, electron channel					± 1	D	
Multijet shape, muon channel					± 10	D	
Diboson modeling	± 8					D	
Parton distribution function	± 1	± 5	± 4	± 3		D	
Unclustered Energy correction	$\pm < 1$	± 3	± 3	$\pm < 1$		D	
ALPGEN η and $\Delta R(jet1, jet2)$ corrections		$\pm < 1$	$\pm < 1$	du		D	
ALPGEN $W p_T$ corrections		$\pm < 1$		at		D	
ALPGEN correction Diboson bias	± 1	± 1	± 1	± 1	modeling	D	
Renormalization and factorization scales		± 1	± 1	dı	ie to Alnae	D n	
ALPGEN parton-jet matching parameters		± 1	± 1	uu r	oromotor	D	
Parton shower and Underlying event correction		± 2	± 2	<u>۲</u>	arameters	D	

Poisson χ^2 fit of SM processes to data

The dijet mass distribution after fitting the SM processes to the data (normalizations for dibosons and W+jets are free parameters)

	Electron channel		Muon channel	
Dibosons	$434~\pm~38$		$304~\pm~25$	
$W\!+\!{ m jets}$	5620 ± 500		$3850~\pm~290$	
$Z{+}\mathrm{jets}$	$180~\pm~42$		$350~\pm~60$	
$tar{t} + { m single top}$	600 ± 69		$363~\pm~39$	
Multijet	932 ± 230		151 ± 69	
Total predicted	7770 ± 170		5020 ± 130	
Data	7763		5026	

Poisson χ^2 fit of SM processes to data

The dijet mass distribution after fitting the SM processes to the data (normalizations for dibosons and W+jets are free parameters)

	Electron chanr	ıel	Muon channel	
Dibosons	434 ± 38		$304~\pm~25$	
$W\!+\!{ m jets}$	5620 ± 500		$3850~\pm~290$	
$Z\!+\!{ m jets}$	180 ± 42		$350~\pm~60$	
$tar{t}+{ m single}{ m top}$	600 ± 69		$363~\pm~39$	
Multijet	932 ± 230		151 ± 69	
Total predicted	7770 ± 170		5020 ± 130	
Data	7763		5026	

The DØ data are consistent with the SM prediction

× Gaussian distribution in dijet mass with a width σ_{excess} determined by the DØ experimental resolution

 $\label{eq:scalar} \begin{array}{l} \mbox{For } M_{\mbox{\tiny JJ}}^{\mbox{\tiny excess}} = 145 \mbox{ GeV} \\ \sigma_{\mbox{\tiny W}}, \mbox{ } M_{\mbox{\tiny W}} \mbox{ from } WW {\rightarrow} \mbox{\scriptsize Ivjj sample} \end{array}$

$$\sigma_{\text{excess}} = \sigma_{\text{W}} \sqrt{\frac{M_{\text{JJ}}^{\text{excess}}}{M_{\text{W}}}} = 15.7 \,\text{GeV}$$

★ Efficiency for WX estimated with WH→Ivbb sample ($m_H@150$ GeV) ★ Assumption BR(X→jj) = 1

× Gaussian distribution in dijet mass with a width σ_{excess} determined by the DØ experimental resolution

For $M_{JJ}^{excess} = 145 \, GeV$ σ_W , M_W from WW \rightarrow Ivjj sample

$$\sigma_{excess} = \sigma_{W} \sqrt{\frac{M_{JJ}^{excess}}{M_{W}}} = 15.7 \, GeV$$

★ Efficiency for WX estimated with WH→Ivbb sample ($m_H@150$ GeV) ★ Assumption BR(X→jj) = 1

× Systematic uncertainties analogous to diboson samples

× Gaussian distribution in dijet mass with a width σ_{excess} determined by the DØ experimental resolution

For $M_{JJ}^{excess} = 145 \, GeV$ σ_W , M_W from WW \rightarrow Ivjj sample

$$\sigma_{excess} = \sigma_{W} \sqrt{\frac{M_{JJ}^{excess}}{M_{W}}} = 15.7 \, GeV$$

★ Efficiency for WX estimated with WH→Ivbb sample ($m_H@150$ GeV) ★ Assumption BR(X→jj) = 1

X Fit **SM processes + WX** to data

(normalizations for dibosons, W+jets, WX are free parameters)

× Gaussian distribution in dijet mass with a width σ_{excess} determined by the DØ experimental resolution

For $M_{JJ}^{excess} = 145 \text{ GeV}$ σ_W , M_W from WW \rightarrow Ivjj sample

$$\sigma_{excess} = \sigma_{W} \sqrt{\frac{M_{JJ}^{excess}}{M_{W}}} = 15.7 \, GeV$$

★ Efficiency for WX estimated with WH→Ivbb sample ($m_H@150$ GeV) ★ Assumption BR(X→jj) = 1

X Fit **SM processes + WX** to data

(normalizations for dibosons, W+jets, WX are free parameters)

Fitted data is consistent with no excess

× Gaussian distribution in dijet mass with a width σ_{excess} determined by the DØ experimental resolution

 $\label{eq:scalar} \begin{array}{l} \mbox{For } M_{\rm JJ}^{\rm excess} = 145 \mbox{ GeV} \\ \sigma_{\rm W}, \ M_{\rm W} \mbox{ from } WW {\rightarrow} l\nu jj \mbox{ sample} \end{array}$

$$\sigma_{excess} = \sigma_{W} \sqrt{\frac{M_{JJ}^{excess}}{M_{W}}} = 15.7 \, GeV$$

★ Efficiency for WX estimated with WH→lvbb sample ($m_H@150$ GeV) ★ Assumption BR(X→jj) = 1

X Fit **SM processes + WX** to data

(normalizations for dibosons, W+jets, WX are free parameters)

1. Measured cross section:

(normalizations for WW+WZ, W+jets, WX float)

$$\sigma(WX) \times B(X \rightarrow jj) = 0.82^{+0.83}_{-0.82} \text{ pb}$$

Fitted cross section consistent with zero!

× Gaussian distribution in dijet mass with a width σ_{excess} determined by the DØ experimental resolution

 $\label{eq:scalar} \begin{array}{l} \mbox{For } M_{\rm JJ}^{\rm excess} = 145 \mbox{ GeV} \\ \sigma_{\rm W}, \ M_{\rm W} \mbox{ from } WW {\rightarrow} l\nu jj \mbox{ sample} \end{array}$

$$\sigma_{excess} = \sigma_{W} \sqrt{\frac{M_{JJ}^{excess}}{M_{W}}} = 15.7 \, GeV$$

★ Efficiency for WX estimated with WH→lvbb sample ($m_H@150$ GeV) ★ Assumption BR(X→jj) = 1

X Fit **SM processes + WX** to data

(normalizations for dibosons, W+jets, WX are free parameters)

1. Measured cross section: (normalizations for WW+WZ, W+jets, WX float)

$$\sigma(WX) \times B(X \rightarrow jj) = 0.82^{+0.83}_{-0.82} \text{ pb}$$

2. Measured cross section: (normalizations for W+jets, WX float, a la CDF)

$$\sigma(WX) \times B(X \rightarrow jj) = 0.42^{+0.76}_{-0.42} \text{ pb}$$

Fitted cross sections consistent with zero!

CL_s method with Poisson Negative Log-Likelihood Test Statistics

95% CL upper limits on WX→Ivjj (for CDF model)

[★]1.9 pb @ M_{JJ} = 145 GeV

Setting the Limits on WX

- Probability for S+B hypothesis to be true as a function of a cross section (for the CDF model of an excess at $M_{JJ} = 145$ GeV)
- Cross section of 4 pb excluded at 4.3σ

Model of 4 pb is inconsistent with the DØ data at 4.3σ

Signal Injection

If a resonance of ~4 pb is present would we be able to see it?

★ Build the test data: "data + WX→lvjj" (CDF model at 145 GeV)
 ★ Fit all SM processes to test data using the dijet mass distribution
 ★ Normalizations for dibosons and W+jets are free parameters

Signal Injection

If a resonance of ~4 pb is present would we be able to see it?

★ Build the test data: "data + WX→lvjj" (CDF model at 145 GeV)
 ★ Fit all SM processes + WX to test data using the dijet mass distribution
 ★ Normalizations for dibosons, W+jets and WX are free parameters

If a resonance of ~4 pb at M_{JJ} ~145 GeV were present in our data, we would certainly see it !

Summary & Conclusions

Search for the resonance @ M_{JJ} = 145 GeV in W+2 jet events using the same event selection

We studied extensively the dijet mass distribution

DØ data are consistent with the SM prediction

For an excess (resonance) at 145 GeV:

data exclude cross sections larger than 1.9 pb at 95% CL

- so cross section of 4 pb excluded at 4.3σ
- result published in <u>PRL 107, 011804 (2011)</u>

Backup Slides

Fit of SM processes to data

Fit of SM processes to data

