Beauty jet production in ZEUS

Mykhailo Lisovyi DESY & University of Hamburg

on behalf of the

Collaboration

International Europhysics Conference on High Energy Physics Grenoble, Rhône-Alpes France July 21-27 2011

Motivation

• Beauty production is directly sensitive to the gluon in the proton:

(beauty quarks in ep collisions are predominantly produced via Boson-Gluon Fusion(BGF) process).

Multiple large scales (Q², m_b, p_T(b)):

(challenge for pQCD).

Q² : photon virtuality x : Bjorken scaling variable Q² > 1 GeV² : Deep Inelastic Scattering (DIS) Q² \approx 0 GeV² : Photoproduction (PHP)

Motivation

Beauty quark contribution to the structure function F_2 at low Q^2 :

$$\frac{d\,\sigma^{b\,\bar{b}}(e^{\pm}\,p)}{dx\,dQ^2} = \frac{2\,\pi\,\alpha^2}{x\,Q^4} [1 + (1 - y)^2](F_2^{b\,\bar{b}}(Q^2, x) - \frac{y^2}{1 + (1 - y)^2}F_L^{b\,\bar{b}}(Q^2, x))$$

At high Q²- check of the b PDF for LHC:

Vertexing in ZEUS

During HERAII ZEUS was equipped with the silicon-strip Micro Vertex detector (MVD):

this enabled reconstruction of secondary vertices from charm and beauty decays.

Analysis strategy:

- Associate tracks with p_{τ} > 500 MeV to a jet using $\Delta R = 1$.
- Fit these tracks to a secondary vertex in 3D.
- Calculate 2D decay length projected on the jet axis, $\rm L_{\rm xy}$

• Use significance of the 2D projected decay length ($S=L_{xy}/\sigma(L_{xy})$) to differentiate between flavour components.

ZEUS-prel-10-004

Secondary vertices in DIS: method

• The beauty fraction is extracted from a fit to the mirrored (to get rid of the symmetric part) significance in bins of the secondary vertex mass using templates from MC.

• Total light flavour normalization is constrained by the unmirrored distributions.

Secondary vertices in DIS: beauty enrichment

ZEUS

 Control distribution for strongly enriched beauty sample:

S⁺- S⁻ >8

 $2 \le M_{vtx} \le 6 \text{ GeV}$

EPS2011, Grenoble

Secondary vertices in DIS: cross sections

 $5 < Q^2 < 1000 \text{ GeV}^2$ 0.02 < y < 0.7 $E_T^{jet} > 5 \text{ GeV}$ $-2.0 < \eta^{jet} < 2.2$ $\hat{L} = 354 \text{ pb}^{-1}$

(2004-2007)

21/07/2011

- The cross section shapes in data are well described by both ZEUS-S and ABKM09 NLO QCD predictions.
- The data are typically 20-30% above the central NLO predictions, but agree within the uncertainties.
- Double-differential cross sections in Q² and x were measured and F₂^b was extracted

Beauty from jet+µ: Q²

EPJ C 69 (2010) 347 arXiv:1005.3396 [hep-ex]

Low- Q^2 region is accessible in HERAI only.

The NLO QCD predictions by HVQDIS (FFNS) tend to lie below data at low Q². 21/07/2011 EPS2011, Grenoble

Beauty from jet+μ: p_T, η EPJ C 69 (2010) 347 arXiv:1005.3396 [hep-ex]

Both LO+parton shower Monte Carlo and NLO QCD predictions describe the data in shape

Also double-differential cross sections in Q^2 and x were measured and $F_2^{\ b}$ was extracted (see later).

Beauty from dijets+e

Kinematic region: Q² > 10 GeV² 0.05 < y < 0.7 0.9 < p_T^e < 8 GeV -1.5 < η^e < 1.5

⊥ = 363 pb⁻¹ (1996-2000)

• NLO QCD predictions describe the data.

• Also double-differential cross sections have been measured and F2b has been extracted (see later)

ZEUS

EPJ C 71 (2011) 1573

arXiv:1101.3692 [hep-ex]

F^b₂ extraction

$$\frac{d\,\sigma^{b\bar{b}}(e^{\pm}\,p)}{dx\,dQ^2} = \frac{2\,\pi\,\alpha^2}{x\,Q^4} [1 + (1 - y)^2](F_2^{b\bar{b}}(Q^2, x) - \frac{y^2}{1 + (1 - y)^2}F_L^{b\bar{b}}(Q^2, x))$$

Measurements are performed in a restricted kinematic region. Extrapolation is based on the NLO QCD predictions.

Measured cross section in a bin (Q_i^2, x_i)

$$F_{2,meas}^{b\bar{b}}(Q_i^2, x_i) = \frac{d\sigma_{i,meas}/dx dQ^2}{d\sigma_{i,theo}/dx dQ^2} F_{2,theo}^{b\bar{b}}(Q_i^2, x_i)$$
NLO QCD in FFNS by HVQDIS

Typical extrapolation factors:

- 1.0 1.3 for the secondary vertex analysis;
- 2.7 (high Q^2) 6.6 (low Q^2) for the jet+ μ analysis.

HERA

F₂^b

- All measurements are in good agreement with each other. The NLO and NNLO QCD predictions based on various PDFs describe the data well.
- \bullet Jet+ μ analysis provides measurement at the lowest Q² values.
- Secondary vertex analysis is the most precise measurement in ZEUS.

LHC, e.g.

b

b

H,Z

b

Secondary vertices in PHP

EPJ C 71 (2011) 1659 arXiv:1104.5444 [hep-ex]

Kinematic region: $Q^2 < 1 \text{ GeV}^2$ 0.2 < y < 0.8 $p_T^{\text{jet 1(2)}} > 7(6) \text{ GeV}$ $-2.5 < \eta^{\text{jet}} < 2.5$

£ = 133 pb⁻¹ (2005)

• Both charm and beauty fractions were extracted simultaneously.

• Single differential cross sections as well as p_T^{b} and p_T^{c} spectra were

measured.

EPS2011, Grenoble

Summary

• Beauty production has been measured using events with a muon and a jet it is associated to as well as using secondary vertices fitted to jets.

• Measured cross sections are in reasonable agreement with the NLO QCD predictions by HVQDIS.

• Double-differential in Q² and x cross sections were used to extract the beauty contribution to the structure function F_2 , F_2^{b} . Measurements of F_2^{b} agree with previous measurements. NLO and NNLO QCD predictions obtained using various PDFs agree with the measurements.

- The secondary vertex technique is the most precise $F_2^{\ b}$ measurement from ZEUS

•Combination with other measurements, would further improve precision.

21/07/2011

EPS2011, Grenoble

Heavy flavour tagging

• Semi-leptonic decays:

 p_{T}^{rel} of a lepton to a jet axis; impact parameter, δ , of the lepton track.

• Lifetime information:

impact parameters of tracks in a jet; displaced secondary vertices.

• Full meson reconstruction:

D^{*±} or D[±] reconstruction for charm (Talk 998 by O. Bachynska).

Results with different techniques have complementary systematics => combination is important (H1prelim-09-171, ZEUS-prel-09-015). 21/07/2011 EPS2011, Grenoble 15

Beauty from jet+µ

- p_{T}^{rel} : the muon transverse momentum relative to the jet.
- Distinct shape of p_T^{rel} allows to extract beauty and background (charm + light flavours) fractions.

Beauty from jet+µ

EPJ C 69 (2010) 347 arXiv:1005.3396v1 [hep-ex]

ZEUS

- m_b = 4.75 GeV (4.5 .. 5.0 GeV);
- ε = 0.0035 ;
- semi-leptonic decay spectrum from JETSET 7.4;
- $\mu_{r,f}^{2} = \frac{1}{4} (Q^{2} + p_{T}^{2} + m_{b}^{2})$ (varied separately by 2 up and down);
- ZEUS-S FFNS NLO PDF .

EPS2011, Grenoble

pQCD approximations (backup)

Massive scheme (FFNS):

- c and b massive;
- valid for $Q^2 \sim M^2_{c,b}$;
- c & b produced pertubatively
 (not part of proton or photon)

DIS: Harris & Smith, HVQDIS fully differential NLO calculation

Massless scheme (ZM-VFNS):

- c and b massless;
- valid for $Q^2 \gg M^2_{c,b}$;
- → c & b present in proton

DIS: inclusive calculation of $F_2^{c,b}$, Kniehl et.al

Variable Flavor Number Scheme (GM-VFNS):

- equivalent to massive at small Q²;
- equivalent to massless at high Q²;

→ c & b present in proton DIS: only $F_2^{c,b}$