Measurement of charged pion and kaon production in proton-carbon interaction at 31 GeV/c from NA61

Alexander Korzenev, Geneva University (on behalf of NA61 collaboration)

EPS HEP2011 July 22, 2011

Outline

- NA61 experiment
- Analysis of charged pion spectra
- Analysis of positively charged kaon spectra
- Prospect for future results

NA61 experiment in CERN/SPS

- ~140 physicists from 25 institutes
- One of main goals: Hadron production in p-C interaction to improve the prediction for the neutrino flux in T2K

- 31 GeV/c secondary hadron beam
- Tracking detectors: 5 TPCs and 3 MWPCs (beam telescope)
- Particle identification: TPC (*dE/dx*) and TOF

Particle identification

Reconstruction & simulation

- Reconstruction procedure/software essentially inherited from NA49
- In general GEANT 3.21 was used to describe spectrometer and Venus 4.12 for primary interaction
- GEANT 4 was used to calculate parameters of the coherent elastic and quasi-elastic scattering (for production cross section)
- Particles originated from primary vertex and produced in strong and electromagnetic interaction were considered

Analysis of charged pion spectra

- Analysis of data collected in the 1-st pilot run in 2007
- arXiv:1102.0983 [hep-ex] accepted for publication in Phys.Rev.C
- Results have been used in 'v_e appearance' paper of T2K arXiv:1106.2822 [hep-ex]
- 667k proton interaction triggers recoded (+46k for empty target)

Analysis techniques

- <u>h⁻ analysis</u>: analysis of π⁻ via measurements of negatively charged particles
- 2) <u>*dE/dx* analysis</u>: π^+ and π^- are identified via *dE/dx* measurements in TPCs
- 3) <u>TOF-dE/dx analysis</u>: π^+ and $\pi^$ are identified via *dE/dx* from TPCs and m^2 from TOF-F
- Independently calculated statistical and systematic errors
- Spectra were compared in overlapping regions to check their consistency
- Complementary domains were combined to reach maximum acceptance

Differential cross section

Slide from the talk of Ken Sakashita in KEK on 15.06.11: New results from T2K experiment

	$N^{exp}_{SK} =$	$R_{ND}^{\mu,\;Data}$	$ imes \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \;$
$R_{ND}^{\mu,\;MC}$	N^{MC}_{SK}	$\frac{N_{SK}^{MC}}{R_{ND}^{\mu, MC}}$	
5.7%	6.2%	2.5%	
10.0%	11.1%	7.6%	Hadron
5.9%	6.6%	1.4%	production
7.7%	6.9%	0.7%	& Interaction
2.2%	0.0%	2.2%	
2.7%	2.0%	0.7%	
0.3%	0.0%	0.2%	
0.6%	0.5%	0.1%	
0.5%	0.7%	0.3%	
15.4%	16.1%	8.5%	
	$R^{\mu,\ MC}_{ND}$ 5.7% 10.0% 5.9% 7.7% 2.2% 2.7% 0.3% 0.6% 0.5% 15.4%	$\begin{array}{c c} N_{SK}^{exp} = \\ \hline R_{ND}^{\mu,\ MC} & N_{SK}^{MC} \\ \hline 5.7\% & 6.2\% \\ 10.0\% & 11.1\% \\ 5.9\% & 6.6\% \\ \hline 7.7\% & 6.9\% \\ \hline 2.2\% & 0.0\% \\ \hline 2.2\% & 0.0\% \\ \hline 0.3\% & 0.0\% \\ \hline 0.3\% & 0.0\% \\ \hline 0.6\% & 0.5\% \\ \hline 0.5\% & 0.7\% \\ \hline 15.4\% & 16.1\% \end{array}$	$\begin{array}{cccc} N_{SK}^{exp} &=& R_{ND}^{\mu,\;Data} \\ \hline R_{ND}^{\mu,\;MC} & N_{SK}^{MC} & \frac{N_{SK}^{MC}}{R_{ND}^{\mu,\;MC}} \\ \hline 5.7\% & 6.2\% & 2.5\% \\ 10.0\% & 11.1\% & 7.6\% \\ 5.9\% & 6.6\% & 1.4\% \\ 7.7\% & 6.9\% & 0.7\% \\ 2.2\% & 0.0\% & 2.2\% \\ 2.7\% & 2.0\% & 0.7\% \\ 0.3\% & 0.0\% & 0.2\% \\ 0.6\% & 0.5\% & 0.1\% \\ 0.5\% & 0.7\% & 0.3\% \\ 15.4\% & 16.1\% & 8.5\% \end{array}$

Summary of v flux uncertainties on N^{exp}_{SK} for $sin^22\theta_{13}=0$

The uncertainty on N^{exp}_{SK} due to the beam flux uncertainty is 8.5% Error cancellation works for some beam uncertainties

Analysis of positive kaon spectra

- Analysis of data collected in the 1-st pilot run in 2007
- In general the fraction of K^+ is by order of magnitude smaller than the fraction of π^+
- Publication is in preparation
- Results have been conveyed to T2K

K⁺ analysis

- Analysis is almost equivalent to the TOF-dE/dx one from the pion section
- Important cut: selection of long tracks to improve the purity of the sample

MC corrections

- Major contribution: correction for the decay in flight of kaons. Others correction are below 10%
- Reconstruction efficiency was maximized at track selection level
- Feed Down (kaons from weak decays) corrections are negligible
- Acceptance below 90% only in the first bin: optimized with track topology selection

Results and comparison to models

FLUKA 2008 GHEISHA 2002 UrQMD 1.3.1 VENUS 4.12

2

3

5

NA61

ratio

5 0.25

0.2

0.15

0.1

0.05

ᅆ

Only two angular bins were considered:

 $20 < \theta < 140$ mrad

 $140 < \theta < 240$ mrad

- In general FLUKA 2008 and VENUS 4.12 give a reasonable description to data
- Systematic error is factor 2-3 smaller than statistical one
- Significant improvement with data 2009 is expected

Ratio K^+/π^+

Differential cross section of K^+

p [GeV/c]

Prospect for forthcoming results

- In year 2009 about 10M events (thin + long target) were collected
- Alignment and calibration are almost completed
- Preliminary results by the end of 0 this year

- In year 2010 about 10M Long Target events were collected
- Should be well enough to get 3% error for the neutrino flux ratio as was requested by T2K

Summary

- Pion data from run 2007 have been published (*arXiv:1102.0983*) and presently used by T2K
- Preliminary results for yields of positively charged kaons have been presented (data 2007)
- Data collected in years 2009 and 2010 will increase statistics by an order of magnitude

Back up slides

Systematic error and correction factors

h⁻ analysis

TOF-dE/dx analysis

Relative uncertainties for π^-

- Among 3 analyzes the one with smaller total error was selected
- Systematic error dominates at lower momenta. At higher momenta stat. error is larger

Comparison to different models predictions

Production cross section

G. Bellettini, Nucl. Phys. 79 (1966) 609 : $\sigma_{inel} = \sigma_{tot} - \sigma_{elastic}$ at 20 GeV S.P. Denisov, Nucl. Phys. B61 (1973) 62: σ_{meas} at 20/30/40/50/60 GeV A. Carroll, Phys. Lett. B80 (1979) 319: $\sigma_{meas} = \sigma_{tot} - \sigma_{elastic} - \sigma_{qe}$ at 60 GeV

NA61 long target measurements for T2K

