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1. Introduction/Motivations

usually considered hopeless to calculate the χSB order
parameters from “first principle" (except on Lattice):

1. 〈q̄q〉1/3, Fπ,.. ∼ O(ΛQCD) ≃ 100–300 MeV
→ αS large → invalidates pert. expansion

2. 〈q̄q〉, Fπ,.. perturbative expansions vanish for m → 0 at
any pert. order (trivial chiral limit)

3. Other arguments e.g. (infrared) renormalon ambiguities
(signature of (factorially) divergent pert. expansion)

Seem to tell that χSB parameters are intrinsically NP..
Aim here: attempt to circumvent at least 1., 2.,

+ try to understand better pert./NP interplay
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This talk: concentrate mainly on pion decay constant Fπ:

• derive a non-trivial, finite Fπ (Fπ/ΛMS) for m → 0 from a
(variationally) modified perturbation (m ≡ mu = md )

• thus derive ΛMS (nf = 2) from Fπ experimental value.

NB For m → 0, αS(µ) [equivalently ΛMS ∼ µe
− 1

2b0αS (...)]
is the only fundamental QCD parameter.

αS(mZ) (also αS(mτ )) known with impressive accuracy:
PDG World average: αS(mZ) = .1184± .0007

Still, worth to get ΛMS from other analyses, specially for
nf = 2(3), not perturbatively extrapolable from high scale
(intense activities in Lattice simulations)

– p. 4



2. (Variationally) Optimized Perturbation

LQCD(g,mq) → LQCD(δ
1

2 g,m(1− δ)a) (αS ≡ g2/(4π))

δ interpolate between Lfree and Lint

quark mass m → arbitrary “variational” parameter

• Take any standard (renormalized) pert. series, expand in
δ after:

m → m (1− δ)a; αS → δ αS

then take δ → 1 (recover original massless theory).
→ BUT a m-dependence remains at any finite δk-order:
fixed typically by optimisation (PMS):

∂
∂m(physical quantity) = 0 for m = mopt

NB a extra parameter, to be fixed by further
physical/technical requirements (see later)
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Simpler model’s support + properties

•At first order, ressembles a lot to Hartree-Fock (or large N )
approximation
•Convergence proof of this procedure for D = 1 λφ4 oscillator
(cancels large pert. order factorial divergences!)
particular case of ’order-dependent mapping’ Seznec Zinn-Justin

’79(exponentially fast convergence for ground state energy
E0 = const.λ1/3; good to % level at 2d δ-order)

In renormalizable QFT, also produces factorial damping at
large perturbative orders (JLK, Reynaud ’2002 )
(delay divergences, but not sufficient for convergence)

•Flexible, Renormalization-compatible, gauge-invariant
applications also at finite temperature (phase transitions
beyond mean field approx in 2D, 3D GN models, QCD...)
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Previous QCD results

NB previous attempts in the past to use this method in QCD
gave chiral symmetry breaking order parameters roughly of
the right order of magnitude
(dynamical “mass gap”, Fπ, 〈q̄q〉)
(JLK ’96, Arvanitis, Geniet, Neveu, JLK ’96)

•However had very cumbersome way to marry
Renormalization Group properties within such modified
perturbation. (i.e. not easily generalizable beyond 2-loop)

Here new proposal: a simple, transparent marriage of OPT
and RG properties, easily generalizable
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3. RG improved OPT

Our main new ingredient (JLK + A. Neveu 1004.4834, PRD 81 125012):
Consider a physical (RG invariant) quantity, e.g. pole mass
M: in addition to OPT Eq:

∂

∂ m
M (k)(m, g, δ = 1)|m≡m̃ ≡ 0 (1)

Require (δ-modified!) series to satisfies a standard
perturbative RG equation:

RG
(

M (k)(m, g, δ = 1)
)

= 0

with standard RG operator:

RG ≡ µ
d

dµ
= µ

∂

∂µ
+ β(g)

∂

∂g
− γm(g)m

∂

∂m
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Combining with Eq. (1) implies RG equation takes a
reduced form

[

µ
∂

∂µ
+ β(g)

∂

∂g

]

M (k)(m, g, δ = 1) = 0

and completely fixes m ≡ m̃ and g ≡ g̃ (two constraints for
two parameters).

• But ΛMS(g) satisfies by def.
[

µ ∂
∂µ

+ β(g) ∂
∂g

]

ΛMS ≡ 0

consistently at a given pert. order for β(g).
Thus equivalent to:

∂

∂ m

(

Mk(m, g, δ = 1)

ΛMS

)

= 0 ;
∂

∂ g

(

Mk(m, g, δ = 1)

ΛMS

)

= 0

– p. 9



Pre-QCD test on Gross Neveu model

•D = 2 O(N) GN model shares many properties with D = 4
QCD (asymptotic freedom, mass gap,...)

•Mass gap known exactly (for any N ):

MP
exact(N)

ΛMS

=
(4e)

1

2N−2

Γ[1− 1
2N−2 ]

from exact S matrix + Thermodynamic Bethe Ansatz
(Zamolodchikov’s ’79 , Forgacs, Niedermayer, Weisz ’91 )

•large N result (MP = ΛMS) exactly recovered at any δ-order
•At δ2 (2-loop) order, OPT+RG results differ at worst by
∼ 1− 2% from exact mass gap for any N
GN also gives useful insight on generic RG+OPT features
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QCD Application; Pion decay constant Fπ

Consider SU(nf )L × SU(nf )R → SU(nf )L+R for massless
nf quarks. (here mostly nf = 2)
Define/calculate pion decay constant Fπ from

i〈0|TAi
µ(p)A

j
ν(0)|0〉 ≡ δijgµνF

2
π +O(pµpν)

where quark axial current: Ai
µ ≡ q̄γµγ5

τi
2 q

Fπ 6= 0 → Chiral symmetry breaking order parameter

Advantage: Perturbative expression known now to 4 loops
(Avdeev et al ’95); (Chetyrkin et al ’08 ’09)

x x x x x x

x x x x
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(Standard) perturbative available information

F 2
π (pert) = Nc

m2

2π2

[

−L+ αS

4π (8L
2 + 4

3L+ 1
6)

+(αS

4π )
2[f30L

3 + f31L+ f32L+ f33] + ..
]

(L ≡ ln m
µ )

+ O(α3
S) recently available (Maier et al ’09, Sturm ’09,..)

Note, finite part (after mass + coupling renormalization) not
separately RG-inv: (i.e. F 2

π as defined has its own
anomalous dimension)

→ renormalization by subtraction of the form:
H(m,αS) = Nc

m2

2π2 (s0/αS + s1 + s2αS + ...) where si fixed
requiring RG-inv order by order: s0 = 1

8π(γ0−b0)
, s1 = ...

But to fix sk needs knowing order k + 1 (the 1/ǫ coefficient)
At O(g2) (3-loop) s3 can be fixed unambiguously from 4-loop
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OPT + RG main features

•OPT and RG equations are polynomial in (L, αS)
At first, one serious drawback: polynomial Eqs of order k →
(too) many solutions, and some complex, at increasing
δ-orders
•Solution: requiring RG perturbative asymptotic (αS → 0)
behaviour: αS ∼ − 1

2b0L
+ · · ·

removes most spurious solutions, which have wrong
(perturbative) RG-behaviour!

•After OPT, variational mass mopt is consistently O(Λ)

(rather than m ∼ 0): mopt plays the role of a mass gap,
supporting why (modifed) series is more trustable:
F opt
π ∼ mopt × pert. series ∼ Λ× pert. series

Also, αopt
S is not too large (perturbative value or almost)
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Fπ OPT+RG estimates

a certain freedom in the basic interpolating Lagrangian:

m → m (1− δ)a

a to be fixed by extra prescription (simplest case a = 1).

•For Fπ: at arbitrary RG order, asymptotic RG branches
only appears for a specific value:

m → m (1− δ)
γ0
2b0

Thus fix this a value and follow solutions at successive
orders

•However not all RG solutions are real (artefact of
polynomial Eq., no physical meaning a priori). Expect
’good’ solutions have moderate imaginary parts (see later)
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Figure 1: Different branches of the RG solutions Re[ln m
µ
(g)] to the modified 3rd order

(4-loop) perturbative series. (g = 4παS ). Unique optimal sol. indicated by a cross
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Parenthesis: caution with ΛMS conventions

Careful with ΛMS definition for comparison (e.g. with

Lattice results). At 3rd order we use

Λ3,Padé
MS

≡ µe
− 1

2b0 g

(

b0 g

1 + ( b1b0 −
b2
b1
) g

)−
b1

2b2
0

(g = 4παS(µ))

(Padé Approximant form, cf some Lattice analysis)
Or alternatively more standard 4-loop perturbative
expression

ln
µ

Λ4
MS

=
1

2b0 g
+

b1
2b20

ln g + · · ·+ f(b0, b1, b2, b3)g
2

NB gives about 5 % differences on ΛMS for our typical αopt
S

values.
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Numerical results (nf = 2)

1st δ-order (2-loop): unique (but complex) solution

Fπ

Λ3
MS

∼ 0.37± 0.15 i L ∼ −0.45± 0.9 i, g ∼ 12.7± 1 i

2d order (3-loop): unique solution with right RG behaviour still
complex...but smaller imaginary part:

Fπ

ΛMS

∼ 0.35± 0.03 i (g ∼ 9.15± 0.24 i ; L ∼ −0.51± 0.69 i)

Note that the value of gopt decreased from 1rst to 2d order,
becoming fairly perturbative (αS ∼ 0.73± 0.02 i)
higher orders? complete δ3 order needs 4-loop results
(known) + log terms of 5-loops (unknown) → We estimate
these from Padé Approximants
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Estimate of theoretical uncertainties

•standard: estimates of higher (4-loop) orders (Padés),
+ truncated RG-equation (only required up to O(gk+1) at
pert. order k). → Very stable: ∼ 1-2% effect on ΛMS

•In addition, ’intrinsical’ uncertainty: complex solutions
being artefacts, we may quantify this uncertainty by taking
empirically the range spanned by
Re(Fπ(g, L))− Fπ(Re(g), Re(L))
increases if Im[Fπ]/Re[Fπ] grows.
→ 1-2% at O(δ2); but 10-13% at O(δ3): Padé effects?

•Subtract effect from explicit chiral symmetry breaking
mu,md 6= 0: Fπ

F0
∼ 1.073± 0.015 (Lattice FLAG working group 2010)

(alternative: implement explicit sym break. in OPT: under
progress)
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Combined results with theoretical uncertainties:

Fπ

Λ3,Padé
MS

∼ 0.29− 0.34 → ΛMS ∼ 250− 295 MeV

To be compare to Lattice results, e.g.:

•’Schrödinger functional scheme’ (ALPHA coll. Della Morte et al ’05):
ΛMS(nf = 2) = 245± 16± 16 MeV
•Wilson fermions (Göckeler et al ’05)

ΛMS(nf = 2) = 261± 17(stat)± 26(syst) MeV
•Twisted fermions (+NP power corrections) (Blossier et al ’10):
ΛMS(nf = 2) = 330± 23± 22−33 MeV

NB those differences seems having to do with
-quark mass effects and different chiral extrapolation
-different calibration (continuum limit) (i.e. better agreement
for ratio of physical quantities)
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Extrapolation to αS at high (perturbative) q2?

Main obstacle: from nf = 2 to nf = 3 i.e. ’crossing’ ms

threshold. Deep NP regime a priori, can’t use standard
perturbative extrapolation.
But, we can calculate similarly Fπ/ΛMS for nf = 3:
mild variation for nf = 3, but ΛMS(nf = 3) <∼ ΛMS(nf = 2)

•Standard perturbative extrapolation (4-loop, with mc and
mb threshold etc) naively gives αS(mZ) ∼ .112− .116.

However, recall OPT modifies pert. theory: we should use
OPT too to extrapolate!
ln µ

Λ pert 6= ln µ
Λ OPT ≡ − ln m

µ (αS) OPT + ln m
ΛMS

OPT

Preliminary estimate: appears to increase αS (under
progress) But need to better control ms effects before to
conclude...
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quark condensate 〈q̄q〉

〈q̄q〉 ≡ −i limx→0TrS(x) ; S(x) = i〈0|T q̄(0)q(x)|0〉

〈q̄q〉 6= 0 → Chiral symmetry breaking (CS) order parameter
One considers in fact the (RG invariant) combination

m(µ)〈q̄q〉(µ) → after OPT ( m
ΛMS

)( 〈q̄q〉
Λ3

MS
)

Perturbative expression known to 3 loops

m〈q̄q〉(pert) = Nc
m4

2π2

[

−L+
1

2
+

αS

4π
(4L2 −

10

3
L+

5

3
) + ...

]

renormalization by subtraction procedure needed similar as
Fπ one.
(3-loop calculation under progress)

– p. 21



Summary and Outlook

•Variationally optimized perturbation gives a simple
procedure to go beyond “large N ” in many models, using
only perturbative information.

•We proposed a complementary and simple
implementation of RG properties
→ O(1− 2%) accuracy using ony 2-loop order, for GN
model mass gap

•QCD calculation based on 2, 3-loop perturbative
information are quite stable,
Estimates of ΛMS from Fπ compare reasonably well with
(some) recent Lattice results.
•Outlook: need to implement explicit chiral sym. breaking in
this framework, specially to attack important ms effects for
nf = 3 and extrapolate to perturbative regime.
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