New physics with a positive or negative signal of 0 uetaeta

Johannes Bergström

Department of Theoretical Physics, Royal Institute of Technology (KTH)

Talk at Europhysics Conference on High-Energy Physics 2011

- ν-experiments imply that neutrinos are massive and lepton flavors mixed. Mixing angles and mass squared differences measured.
- Only upper bounds on the mass of the lightest neutrino, from beta decay experiments (kinematic) and cosmology (indirect).
- Neutrinos Dirac or Majorana particles. If Majorana, neutrinoless double beta decay can occur, $(A, Z) \rightarrow (A, Z + 2) + 2e^{-}$.
- Many near-future experiments related to neutrino masses and leptonic mixing $(0\nu\beta\beta, \beta, \text{ cosmology, oscillation}).$

$0 u\beta\beta$ through light neutrino exchange

$$\Gamma = G |\mathcal{M}^{0\nu}|^2 |m_{ee}|^2$$

$$\begin{split} \mathcal{G} &= \text{known phase space factor} \\ |m_{ee}| &= \left| m_1 c_{12}^2 c_{13}^2 + m_2 s_{12}^2 c_{13}^2 e^{2i\alpha} + m_3 s_{13}^2 e^{2i\beta} \right| \\ \mathcal{M}^{0\nu} &= \text{Nuclear matrix element (NME)} \end{split}$$

• Calculation of ${\cal M}^{0\nu}$ a notoriously difficult task \Rightarrow underlying parameter inference uncertain.

- Many extensions of the SM include breaking of lepton number and induce 0νββ, and often also neutrino masses.
- New *heavy* physics describable using effective field theory (EFT) ⇒ use EFT instead of treating specific high-energy models
 - 1: Alter the Lorentz and/or chirality structure of four-fermion vertex, keep the neutrino propagator. Studied extensively.
 - 2: Treat the whole interaction as point-like.

- Many extensions of the SM include breaking of lepton number and induce 0νββ, and often also neutrino masses.
- New *heavy* physics describable using effective field theory (EFT) ⇒ use EFT instead of treating specific high-energy models
 - 1: Alter the Lorentz and/or chirality structure of four-fermion vertex, keep the neutrino propagator. Studied extensively.
 - 2: Treat the whole interaction as point-like.
- In case 2: General dimension-9 Lagrangian

$$\mathcal{L} = \frac{G_{\mathsf{F}}^2}{2m_{\mathsf{p}}} \left(\epsilon_1 J J j + \epsilon_2 J^{\mu\nu} J_{\mu\nu} j + \epsilon_3 J^{\mu} J_{\mu} j + \epsilon_4 J^{\mu} J_{\mu\nu} j^{\nu} + \epsilon_5 J^{\mu} J j_{\mu} \right) + \mathsf{h.c.},$$

where

$$\begin{aligned} J_{L,R} &= \overline{u} \left(1 \mp \gamma_5 \right) d, \quad J_{L,R}^{\mu} = \overline{u} \gamma^{\mu} \left(1 \mp \gamma_5 \right) d, \quad j_{L,R} = \overline{e} \left(1 \mp \gamma_5 \right) e^c, \text{ etc.} \\ \epsilon_i &= \epsilon_i^{LRL}, \text{ etc.} \end{aligned}$$

• Total decay rate including interferences with ν -exchange can be calculated.

- How does the combination of future results of experiments related to neutrino masses constrain new physics, parametrized by the effective couplings?
- The types of experiments one should consider are
 - $0 \nu \beta \beta \text{-experiments, sensitive to } |m_{ee}| \text{ and other new physics.} \\ \text{GERDA as ex.}$
 - **②** β -decay experiments, sensitive to the effective kinematical mass m_{β} of ν_{e} . KATRIN as ex.
 - Osmological observations, sensitive to the effective sum of neutrino masses. Mainly Planck.

Current situation

- Effective mass $|m_{ee}|$ as a function of the smallest neutrino mass for normal (blue) and inverted (yellow) mass ordering.
- Regions disfavored by previous experimental results in gray.
- Sensitivities of considered experiments in red.

6/12

- Define three benchmark scenarios A, B, and C.
- Only consider one ϵ -coefficient non-zero at a time.
- Use a χ^2 -analysis to determine if the different measurements are consistent or not, taking into account the uncertainty in the NME.
- Interferences can only occur when the final state e^- have identical chiralities. Thus, only effective operators containing $j_R = \overline{e} (1 + \gamma_5) e^c$ can interfere with the standard mechanism.

- A: Negative signal, $T_{1/2}^{\text{bound}} = 2.8 \cdot 10^{27}$ years (95 % C.L., 150 times H-M limit).
 - No 0νββ can be established. Uncertain if neutrinos Dirac or Majorana. Upper bounds on new physics.
 - *T*^ε_{1/2} > *T*^{bound}_{1/2} gives the upper bounds (using nominal NMEs) on the magnitudes of the coefficients of the effective operators as

	$ \epsilon_1 $	$ \epsilon_2 $	$ \epsilon_3^{LLz,RRz} $	$ \epsilon_3^{LRz,RLz} $	$ \epsilon_4 $	$ \epsilon_5 $
А	$1.6 \cdot 10^{-8}$	$9.5\cdot10^{-11}$	$1.2 \cdot 10^{-9}$	$7.3\cdot10^{-10}$	$7.9\cdot10^{-10}$	$7.1 \cdot 10^{-9}$

• As expected, an order of magnitude better that those based on the H-M limit.

B: Consistent positive signal

- Positive 0νββ rate consistent with positive signals from KATRIN and Planck. 0νββ could be attributed to the light ν-exchange.
- However, new physics could still contribute to 0νββ, but only within the experimental error (23 %).
- Choose lightest neutrino mass m = 0.3 eV, $T_{1/2}^{obs} = 5.0 \cdot 10^{25}$ years.
- Only few operators can interfere with ν -exchange \Rightarrow neglect interferences.

	$ \epsilon_1 $	$ \epsilon_2 $	$ \epsilon_3^{LLz,RRz} $	$ \epsilon_3^{LRz,RLz} $	$ \epsilon_4 $	ϵ_5
Α	$1.6 \cdot 10^{-8}$	$9.5 \cdot 10^{-11}$	$1.2 \cdot 10^{-9}$	$7.3 \cdot 10^{-10}$	$7.9 \cdot 10^{-10}$	$7.1 \cdot 10^{-9}$
В	$5.8 \cdot 10^{-8}$	$3.5 \cdot 10^{-10}$	$4.5 \cdot 10^{-9}$	$2.7 \cdot 10^{-9}$	$2.9 \cdot 10^{-9}$	$2.6 \cdot 10^{-8}$

B: Consistent positive signal

- Positive 0νββ rate consistent with positive signals from KATRIN and Planck. 0νββ could be attributed to the light ν-exchange.
- However, new physics could still contribute to 0νββ, but only within the experimental error (23 %).
- Choose lightest neutrino mass m = 0.3 eV, $T_{1/2}^{obs} = 5.0 \cdot 10^{25}$ years.
- Only few operators can interfere with ν -exchange \Rightarrow neglect interferences.

	$ \epsilon_1 $	$ \epsilon_2 $	$ \epsilon_3^{LLz,RRz} $	$ \epsilon_3^{LRz,RLz} $	$ \epsilon_4 $	$ \epsilon_5 $
Α	$1.6 \cdot 10^{-8}$	$9.5 \cdot 10^{-11}$	$1.2 \cdot 10^{-9}$	$7.3 \cdot 10^{-10}$	$7.9 \cdot 10^{-10}$	$7.1 \cdot 10^{-9}$
В	$5.8 \cdot 10^{-8}$	$3.5 \cdot 10^{-10}$	$4.5 \cdot 10^{-9}$	$2.7 \cdot 10^{-9}$	$2.9 \cdot 10^{-9}$	$2.6 \cdot 10^{-8}$

• In those few cases where interferences occur, they are expected to dominate (unless the relative phase ϕ is very close to $\pi/2$).

	$ \epsilon_1^{xyR}\cos\phi_1 $	$ \epsilon_2^{xyR}\cos\phi_2 $	$ \epsilon_3^{LLR,RRR}\cos\phi_3 $	$ \epsilon_3^{LRR,RLR}\cos\phi_3 $
B (interf.)	$1.4 \cdot 10^{-8}$	$8.4 \cdot 10^{-11}$	$1.1 \cdot 10^{-9}$	$6.5 \cdot 10^{-10}$

- C: Inconsistent positive signal
 - A high rate of $0\nu\beta\beta$, inconsistent with negative signals in KATRIN and Planck, $T_{1/2}^{obs} = 1.3\cdot 10^{27}$ years
 - ν -exchange can only contribute a small part of the $0\nu\beta\beta$ rate.
 - The rest of the rate is the attributed to the new physics, giving non-zero estimates.

С	$ \epsilon_1 $	$ \epsilon_2 $	$ \epsilon_3^{LLz,RRz} $	$ \epsilon_3^{LRz,RLz} $	$ \epsilon_4 $	$ \epsilon_5 $
Estimate	$2.3 \cdot 10^{-8}$	$1.4\cdot10^{-10}$	$1.8 \cdot 10^{-9}$	$1.1 \cdot 10^{-9}$	$1.2 \cdot 10^{-9}$	$1.1 \cdot 10^{-8}$

- Future bounds on the strength of different short-range contributions to $0\nu\beta\beta$ depend on the outcome of ongoing and planned experiments related to neutrino masses.
- For some scenarios, bounds on the coefficients ε_i of each effective operator can be determined.
- In some cases one can obtain non-zero estimates.
- More accurate calculations of NMEs will improve the robustness of the results.
- J. Bergström, A. Merle, and T. Ohlsson Constraining new physics with a positive or negative signal of neutrino-less double beta decay Journal of High Energy Physics **05**, 122 (2011), arXiv:1103.3015

Thanks for listening!

Questions?

